اہم مواد پر چھوڑ دیں
x کے لئے حل کریں (complex solution)
Tick mark Image
x کے لئے حل کریں
Tick mark Image
مخطط

ویب سرچ سے اسی طرح کے مسائل

حصہ

\frac{1}{4}\left(x+1\right)^{2}\left(x-1\right)\left(x-1\right)+x^{2}=\frac{1}{4}\left(x^{2}+1\right)\left(x^{2}+1\right)
\left(x+1\right)^{2} حاصل کرنے کے لئے x+1 اور x+1 کو ضرب دیں۔
\frac{1}{4}\left(x+1\right)^{2}\left(x-1\right)^{2}+x^{2}=\frac{1}{4}\left(x^{2}+1\right)\left(x^{2}+1\right)
\left(x-1\right)^{2} حاصل کرنے کے لئے x-1 اور x-1 کو ضرب دیں۔
\frac{1}{4}\left(x+1\right)^{2}\left(x-1\right)^{2}+x^{2}=\frac{1}{4}\left(x^{2}+1\right)^{2}
\left(x^{2}+1\right)^{2} حاصل کرنے کے لئے x^{2}+1 اور x^{2}+1 کو ضرب دیں۔
\frac{1}{4}\left(x^{2}+2x+1\right)\left(x-1\right)^{2}+x^{2}=\frac{1}{4}\left(x^{2}+1\right)^{2}
\left(x+1\right)^{2} میں توسیع کے لئے دو رقمى کليہ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} استعمال کریں۔
\frac{1}{4}\left(x^{2}+2x+1\right)\left(x^{2}-2x+1\right)+x^{2}=\frac{1}{4}\left(x^{2}+1\right)^{2}
\left(x-1\right)^{2} میں توسیع کے لئے دو رقمى کليہ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} استعمال کریں۔
\left(\frac{1}{4}x^{2}+\frac{1}{2}x+\frac{1}{4}\right)\left(x^{2}-2x+1\right)+x^{2}=\frac{1}{4}\left(x^{2}+1\right)^{2}
\frac{1}{4} کو ایک سے x^{2}+2x+1 ضرب دینے کے لیئے منقسم خاصیت کا استعمال کریں۔
\frac{1}{4}x^{4}-\frac{1}{2}x^{2}+\frac{1}{4}+x^{2}=\frac{1}{4}\left(x^{2}+1\right)^{2}
\frac{1}{4}x^{2}+\frac{1}{2}x+\frac{1}{4} کو ایک سے x^{2}-2x+1 ضرب دینے کے لیئے منقسم خاصیت کا استعمال کریں اور ایک جیسی اصطلاحات کو یکجا کریں۔
\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}=\frac{1}{4}\left(x^{2}+1\right)^{2}
\frac{1}{2}x^{2} حاصل کرنے کے لئے -\frac{1}{2}x^{2} اور x^{2} کو یکجا کریں۔
\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}=\frac{1}{4}\left(\left(x^{2}\right)^{2}+2x^{2}+1\right)
\left(x^{2}+1\right)^{2} میں توسیع کے لئے دو رقمى کليہ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} استعمال کریں۔
\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}=\frac{1}{4}\left(x^{4}+2x^{2}+1\right)
کسی بھی دوسری قوت کی قوت کو بڑھانے کے لیئے، قوت نما کو ضرب دیں۔ 4 حاصل کرنے کے لئے 2 اور 2 کو ضرب دیں۔
\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}=\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}
\frac{1}{4} کو ایک سے x^{4}+2x^{2}+1 ضرب دینے کے لیئے منقسم خاصیت کا استعمال کریں۔
\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}-\frac{1}{4}x^{4}=\frac{1}{2}x^{2}+\frac{1}{4}
\frac{1}{4}x^{4} کو دونوں طرف سے منہا کریں۔
\frac{1}{2}x^{2}+\frac{1}{4}=\frac{1}{2}x^{2}+\frac{1}{4}
0 حاصل کرنے کے لئے \frac{1}{4}x^{4} اور -\frac{1}{4}x^{4} کو یکجا کریں۔
\frac{1}{2}x^{2}+\frac{1}{4}-\frac{1}{2}x^{2}=\frac{1}{4}
\frac{1}{2}x^{2} کو دونوں طرف سے منہا کریں۔
\frac{1}{4}=\frac{1}{4}
0 حاصل کرنے کے لئے \frac{1}{2}x^{2} اور -\frac{1}{2}x^{2} کو یکجا کریں۔
\text{true}
\frac{1}{4} اور \frac{1}{4} کا موازنہ کریں
x\in \mathrm{C}
کسی x کے لئے یہ صحیح ہے۔
\frac{1}{4}\left(x+1\right)^{2}\left(x-1\right)\left(x-1\right)+x^{2}=\frac{1}{4}\left(x^{2}+1\right)\left(x^{2}+1\right)
\left(x+1\right)^{2} حاصل کرنے کے لئے x+1 اور x+1 کو ضرب دیں۔
\frac{1}{4}\left(x+1\right)^{2}\left(x-1\right)^{2}+x^{2}=\frac{1}{4}\left(x^{2}+1\right)\left(x^{2}+1\right)
\left(x-1\right)^{2} حاصل کرنے کے لئے x-1 اور x-1 کو ضرب دیں۔
\frac{1}{4}\left(x+1\right)^{2}\left(x-1\right)^{2}+x^{2}=\frac{1}{4}\left(x^{2}+1\right)^{2}
\left(x^{2}+1\right)^{2} حاصل کرنے کے لئے x^{2}+1 اور x^{2}+1 کو ضرب دیں۔
\frac{1}{4}\left(x^{2}+2x+1\right)\left(x-1\right)^{2}+x^{2}=\frac{1}{4}\left(x^{2}+1\right)^{2}
\left(x+1\right)^{2} میں توسیع کے لئے دو رقمى کليہ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} استعمال کریں۔
\frac{1}{4}\left(x^{2}+2x+1\right)\left(x^{2}-2x+1\right)+x^{2}=\frac{1}{4}\left(x^{2}+1\right)^{2}
\left(x-1\right)^{2} میں توسیع کے لئے دو رقمى کليہ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} استعمال کریں۔
\left(\frac{1}{4}x^{2}+\frac{1}{2}x+\frac{1}{4}\right)\left(x^{2}-2x+1\right)+x^{2}=\frac{1}{4}\left(x^{2}+1\right)^{2}
\frac{1}{4} کو ایک سے x^{2}+2x+1 ضرب دینے کے لیئے منقسم خاصیت کا استعمال کریں۔
\frac{1}{4}x^{4}-\frac{1}{2}x^{2}+\frac{1}{4}+x^{2}=\frac{1}{4}\left(x^{2}+1\right)^{2}
\frac{1}{4}x^{2}+\frac{1}{2}x+\frac{1}{4} کو ایک سے x^{2}-2x+1 ضرب دینے کے لیئے منقسم خاصیت کا استعمال کریں اور ایک جیسی اصطلاحات کو یکجا کریں۔
\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}=\frac{1}{4}\left(x^{2}+1\right)^{2}
\frac{1}{2}x^{2} حاصل کرنے کے لئے -\frac{1}{2}x^{2} اور x^{2} کو یکجا کریں۔
\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}=\frac{1}{4}\left(\left(x^{2}\right)^{2}+2x^{2}+1\right)
\left(x^{2}+1\right)^{2} میں توسیع کے لئے دو رقمى کليہ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} استعمال کریں۔
\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}=\frac{1}{4}\left(x^{4}+2x^{2}+1\right)
کسی بھی دوسری قوت کی قوت کو بڑھانے کے لیئے، قوت نما کو ضرب دیں۔ 4 حاصل کرنے کے لئے 2 اور 2 کو ضرب دیں۔
\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}=\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}
\frac{1}{4} کو ایک سے x^{4}+2x^{2}+1 ضرب دینے کے لیئے منقسم خاصیت کا استعمال کریں۔
\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}-\frac{1}{4}x^{4}=\frac{1}{2}x^{2}+\frac{1}{4}
\frac{1}{4}x^{4} کو دونوں طرف سے منہا کریں۔
\frac{1}{2}x^{2}+\frac{1}{4}=\frac{1}{2}x^{2}+\frac{1}{4}
0 حاصل کرنے کے لئے \frac{1}{4}x^{4} اور -\frac{1}{4}x^{4} کو یکجا کریں۔
\frac{1}{2}x^{2}+\frac{1}{4}-\frac{1}{2}x^{2}=\frac{1}{4}
\frac{1}{2}x^{2} کو دونوں طرف سے منہا کریں۔
\frac{1}{4}=\frac{1}{4}
0 حاصل کرنے کے لئے \frac{1}{2}x^{2} اور -\frac{1}{2}x^{2} کو یکجا کریں۔
\text{true}
\frac{1}{4} اور \frac{1}{4} کا موازنہ کریں
x\in \mathrm{R}
کسی x کے لئے یہ صحیح ہے۔