\frac{ }{ } { n }^{ 2 } = { 11 }^{ 2 } - { 107 }^{ 2 } + { 96 }^{ 2 } + { 59 }^{ 2 }
n کے لئے حل کریں
n=-37
n=37
حصہ
کلپ بورڈ پر کاپی کیا گیا
1n^{2}=11^{2}-107^{2}+96^{2}+59^{2}
کوئی بھی چیز ایک سے تقسیم ہو کر اپنا آپ دیتی ہے۔
1n^{2}=121-107^{2}+96^{2}+59^{2}
2 کی 11 پاور کا حساب کریں اور 121 حاصل کریں۔
1n^{2}=121-11449+96^{2}+59^{2}
2 کی 107 پاور کا حساب کریں اور 11449 حاصل کریں۔
1n^{2}=-11328+96^{2}+59^{2}
-11328 حاصل کرنے کے لئے 121 کو 11449 سے تفریق کریں۔
1n^{2}=-11328+9216+59^{2}
2 کی 96 پاور کا حساب کریں اور 9216 حاصل کریں۔
1n^{2}=-2112+59^{2}
-2112 حاصل کرنے کے لئے -11328 اور 9216 شامل کریں۔
1n^{2}=-2112+3481
2 کی 59 پاور کا حساب کریں اور 3481 حاصل کریں۔
1n^{2}=1369
1369 حاصل کرنے کے لئے -2112 اور 3481 شامل کریں۔
1n^{2}-1369=0
1369 کو دونوں طرف سے منہا کریں۔
n^{2}-1369=0
شرائط کو پھر ترتیب دیں۔
\left(n-37\right)\left(n+37\right)=0
n^{2}-1369 پر غورکریں۔ n^{2}-1369 کو بطور n^{2}-37^{2} دوبارہ تحریر کریں۔ مربعوں کے فرق کو اس قاعدہ کا استعمال کر کے اجزائے ضربی میں بدلا جا سکتا ہے: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right)۔
n=37 n=-37
مساوات کا حل تلاش کرنے کیلئے، n-37=0 اور n+37=0 حل کریں۔
1n^{2}=11^{2}-107^{2}+96^{2}+59^{2}
کوئی بھی چیز ایک سے تقسیم ہو کر اپنا آپ دیتی ہے۔
1n^{2}=121-107^{2}+96^{2}+59^{2}
2 کی 11 پاور کا حساب کریں اور 121 حاصل کریں۔
1n^{2}=121-11449+96^{2}+59^{2}
2 کی 107 پاور کا حساب کریں اور 11449 حاصل کریں۔
1n^{2}=-11328+96^{2}+59^{2}
-11328 حاصل کرنے کے لئے 121 کو 11449 سے تفریق کریں۔
1n^{2}=-11328+9216+59^{2}
2 کی 96 پاور کا حساب کریں اور 9216 حاصل کریں۔
1n^{2}=-2112+59^{2}
-2112 حاصل کرنے کے لئے -11328 اور 9216 شامل کریں۔
1n^{2}=-2112+3481
2 کی 59 پاور کا حساب کریں اور 3481 حاصل کریں۔
1n^{2}=1369
1369 حاصل کرنے کے لئے -2112 اور 3481 شامل کریں۔
n^{2}=1369
1 سے دونوں اطراف کو تقسیم کریں۔
n=37 n=-37
مساوات کی دونوں اطراف کا جذر لیں۔
1n^{2}=11^{2}-107^{2}+96^{2}+59^{2}
کوئی بھی چیز ایک سے تقسیم ہو کر اپنا آپ دیتی ہے۔
1n^{2}=121-107^{2}+96^{2}+59^{2}
2 کی 11 پاور کا حساب کریں اور 121 حاصل کریں۔
1n^{2}=121-11449+96^{2}+59^{2}
2 کی 107 پاور کا حساب کریں اور 11449 حاصل کریں۔
1n^{2}=-11328+96^{2}+59^{2}
-11328 حاصل کرنے کے لئے 121 کو 11449 سے تفریق کریں۔
1n^{2}=-11328+9216+59^{2}
2 کی 96 پاور کا حساب کریں اور 9216 حاصل کریں۔
1n^{2}=-2112+59^{2}
-2112 حاصل کرنے کے لئے -11328 اور 9216 شامل کریں۔
1n^{2}=-2112+3481
2 کی 59 پاور کا حساب کریں اور 3481 حاصل کریں۔
1n^{2}=1369
1369 حاصل کرنے کے لئے -2112 اور 3481 شامل کریں۔
1n^{2}-1369=0
1369 کو دونوں طرف سے منہا کریں۔
n^{2}-1369=0
شرائط کو پھر ترتیب دیں۔
n=\frac{0±\sqrt{0^{2}-4\left(-1369\right)}}{2}
یہ مساوات معیاری وضع میں ہے: ax^{2}+bx+c=0۔ مربعی فارمولا \frac{-b±\sqrt{b^{2}-4ac}}{2a} میں a کے لئے 1 کو، b کے لئے 0 کو اور c کے لئے -1369 کو متبادل کریں۔
n=\frac{0±\sqrt{-4\left(-1369\right)}}{2}
مربع 0۔
n=\frac{0±\sqrt{5476}}{2}
-4 کو -1369 مرتبہ ضرب دیں۔
n=\frac{0±74}{2}
5476 کا جذر لیں۔
n=37
جب ± جمع ہو تو اب مساوات n=\frac{0±74}{2} کو حل کریں۔ 74 کو 2 سے تقسیم کریں۔
n=-37
جب ± منفی ہو تو اب مساوات n=\frac{0±74}{2} کو حل کریں۔ -74 کو 2 سے تقسیم کریں۔
n=37 n=-37
مساوات اب حل ہو گئی ہے۔
مثالیں
دوطرفہ مساوات
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
لکیری مساوات
y = 3x + 4
حساب
699 * 533
میٹرکس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
بیک وقت مساوات
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمايُز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
انضمام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
حدود
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}