w.r.t. y میں فرق کریں
-\frac{6}{y^{7}}
جائزہ ليں
\frac{1}{y^{6}}
مخطط
حصہ
کلپ بورڈ پر کاپی کیا گیا
y^{-5}\frac{\mathrm{d}}{\mathrm{d}y}(\frac{1}{y})+\frac{1}{y}\frac{\mathrm{d}}{\mathrm{d}y}(y^{-5})
کسی بھی دو قبل امتیاز افعال کے لیے، دو افعال کی مصنوعہ کا مشتق دوسرے افعال کے مشتق کے مرتبہ کا پہلا فعل ہے، اس کے ساتھ ہی دوسرے فعل کے پہلے کا مشتق ہے۔
y^{-5}\left(-1\right)y^{-1-1}+\frac{1}{y}\left(-5\right)y^{-5-1}
کثیر رقمی کا مشتق اس کی اصطلاحات کے مشتق کا کل میزان ہے۔ کسی بھی مستقل اصطلاح کا مشتق 0 ہے۔ ax^{n} کا مشتق nax^{n-1} ہے۔
y^{-5}\left(-1\right)y^{-2}+\frac{1}{y}\left(-5\right)y^{-6}
سادہ کریں۔
-y^{-5-2}-5y^{-1-6}
ایک سی بنیاد کی پاورز کو ضرب دینے کے لیئے، ان کی قوتوں کو شامل کریں۔
-y^{-7}-5y^{-7}
سادہ کریں۔
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{1}{1}y^{-5-1})
یکساں بنیاد کی پاورز کو تقسیم کرنے کے لیئے، نیومیریٹر کی قوت کو ڈینومینیٹر کی قوت سے منہا کریں۔
\frac{\mathrm{d}}{\mathrm{d}y}(y^{-6})
حساب کریں۔
-6y^{-6-1}
کثیر رقمی کا مشتق اس کی اصطلاحات کے مشتق کا کل میزان ہے۔ کسی بھی مستقل اصطلاح کا مشتق 0 ہے۔ ax^{n} کا مشتق nax^{n-1} ہے۔
-6y^{-7}
حساب کریں۔
\frac{1}{y^{6}}
y کو بطور y^{-5}y^{6} دوبارہ تحریر کریں۔ نیومیریٹر اور ڈینومینیٹر دونوں میں y^{-5} کو قلم زد کریں۔
مثالیں
دوطرفہ مساوات
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
لکیری مساوات
y = 3x + 4
حساب
699 * 533
میٹرکس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
بیک وقت مساوات
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمايُز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
انضمام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
حدود
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}