اہم مواد پر چھوڑ دیں
x کے لئے حل کریں
Tick mark Image
مخطط

ویب سرچ سے اسی طرح کے مسائل

حصہ

\left(x-2\right)x=\left(x+2\right)\times 3
جبکہ زیرو کے ساتھ تقسیم واضح نہیں کی گئی ہے تو متغیرہ x اقدار -2,2,3 میں سے کسی کے بھی مساوی نہیں ہو سکتا۔ مساوات کی دونوں اطراف کو \left(x-3\right)\left(x-2\right)\left(x+2\right) سے ضرب دیں، x^{2}-x-6,x^{2}-5x+6 کا سب کم سے کم مشترک حاصل ضرب۔
x^{2}-2x=\left(x+2\right)\times 3
x-2 کو ایک سے x ضرب دینے کے لیئے منقسم خاصیت کا استعمال کریں۔
x^{2}-2x=3x+6
x+2 کو ایک سے 3 ضرب دینے کے لیئے منقسم خاصیت کا استعمال کریں۔
x^{2}-2x-3x=6
3x کو دونوں طرف سے منہا کریں۔
x^{2}-5x=6
-5x حاصل کرنے کے لئے -2x اور -3x کو یکجا کریں۔
x^{2}-5x-6=0
6 کو دونوں طرف سے منہا کریں۔
a+b=-5 ab=-6
مساوات حل کرنے کیلئے، فیکٹر x^{2}-5x-6 فالمولہ x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) استعمال کر رہا ہے۔ a اور b حاصل کرنے کی غرض سے، حل کرنے کیلئے سسٹم سیٹ کریں۔
1,-6 2,-3
چونکہ ab منفی ہے، a اور b کی علامت مخالف ہیں۔ چونکہ a+b منفی ہے، منفی عدد میں مثبت سے زیادہ مطلق قدر ہے۔ ایسے تمام صحیح اعداد کے جوڑے درج کریں جن کا حاصل -6 ہوتا ہے۔
1-6=-5 2-3=-1
ہر جوڑے کی رقم کا حساب لگائیں۔
a=-6 b=1
حل ایک جوڑا ہے جو میزان -5 دیتا ہے۔
\left(x-6\right)\left(x+1\right)
حاصل شدہ اقدار کا استعمال کر کے فیکٹر شدہ اظہار \left(x+a\right)\left(x+b\right) دوبارہ لکھیں۔
x=6 x=-1
مساوات کا حل تلاش کرنے کیلئے، x-6=0 اور x+1=0 حل کریں۔
\left(x-2\right)x=\left(x+2\right)\times 3
جبکہ زیرو کے ساتھ تقسیم واضح نہیں کی گئی ہے تو متغیرہ x اقدار -2,2,3 میں سے کسی کے بھی مساوی نہیں ہو سکتا۔ مساوات کی دونوں اطراف کو \left(x-3\right)\left(x-2\right)\left(x+2\right) سے ضرب دیں، x^{2}-x-6,x^{2}-5x+6 کا سب کم سے کم مشترک حاصل ضرب۔
x^{2}-2x=\left(x+2\right)\times 3
x-2 کو ایک سے x ضرب دینے کے لیئے منقسم خاصیت کا استعمال کریں۔
x^{2}-2x=3x+6
x+2 کو ایک سے 3 ضرب دینے کے لیئے منقسم خاصیت کا استعمال کریں۔
x^{2}-2x-3x=6
3x کو دونوں طرف سے منہا کریں۔
x^{2}-5x=6
-5x حاصل کرنے کے لئے -2x اور -3x کو یکجا کریں۔
x^{2}-5x-6=0
6 کو دونوں طرف سے منہا کریں۔
a+b=-5 ab=1\left(-6\right)=-6
مساوات حل کرنے کیلئے، گروپنگ کرکے بائیں جانب فیکٹر کریں۔ پہلے، بائیں جانب کو x^{2}+ax+bx-6 بطور دوبارہ لکھنا ہو گا۔ a اور b حاصل کرنے کی غرض سے، حل کرنے کیلئے سسٹم سیٹ کریں۔
1,-6 2,-3
چونکہ ab منفی ہے، a اور b کی علامت مخالف ہیں۔ چونکہ a+b منفی ہے، منفی عدد میں مثبت سے زیادہ مطلق قدر ہے۔ ایسے تمام صحیح اعداد کے جوڑے درج کریں جن کا حاصل -6 ہوتا ہے۔
1-6=-5 2-3=-1
ہر جوڑے کی رقم کا حساب لگائیں۔
a=-6 b=1
حل ایک جوڑا ہے جو میزان -5 دیتا ہے۔
\left(x^{2}-6x\right)+\left(x-6\right)
x^{2}-5x-6 کو بطور \left(x^{2}-6x\right)+\left(x-6\right) دوبارہ تحریر کریں۔
x\left(x-6\right)+x-6
x^{2}-6x میں x اجزائے ضربی میں تقسیم کریں۔
\left(x-6\right)\left(x+1\right)
عام اصطلاح x-6 کا منقسم خاصیت استعمال کرتے ہوئے اجزائے ضربی میں تقسیم کریں۔
x=6 x=-1
مساوات کا حل تلاش کرنے کیلئے، x-6=0 اور x+1=0 حل کریں۔
\left(x-2\right)x=\left(x+2\right)\times 3
جبکہ زیرو کے ساتھ تقسیم واضح نہیں کی گئی ہے تو متغیرہ x اقدار -2,2,3 میں سے کسی کے بھی مساوی نہیں ہو سکتا۔ مساوات کی دونوں اطراف کو \left(x-3\right)\left(x-2\right)\left(x+2\right) سے ضرب دیں، x^{2}-x-6,x^{2}-5x+6 کا سب کم سے کم مشترک حاصل ضرب۔
x^{2}-2x=\left(x+2\right)\times 3
x-2 کو ایک سے x ضرب دینے کے لیئے منقسم خاصیت کا استعمال کریں۔
x^{2}-2x=3x+6
x+2 کو ایک سے 3 ضرب دینے کے لیئے منقسم خاصیت کا استعمال کریں۔
x^{2}-2x-3x=6
3x کو دونوں طرف سے منہا کریں۔
x^{2}-5x=6
-5x حاصل کرنے کے لئے -2x اور -3x کو یکجا کریں۔
x^{2}-5x-6=0
6 کو دونوں طرف سے منہا کریں۔
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-6\right)}}{2}
یہ مساوات معیاری وضع میں ہے: ax^{2}+bx+c=0۔ مربعی فارمولا \frac{-b±\sqrt{b^{2}-4ac}}{2a} میں a کے لئے 1 کو، b کے لئے -5 کو اور c کے لئے -6 کو متبادل کریں۔
x=\frac{-\left(-5\right)±\sqrt{25-4\left(-6\right)}}{2}
مربع -5۔
x=\frac{-\left(-5\right)±\sqrt{25+24}}{2}
-4 کو -6 مرتبہ ضرب دیں۔
x=\frac{-\left(-5\right)±\sqrt{49}}{2}
25 کو 24 میں شامل کریں۔
x=\frac{-\left(-5\right)±7}{2}
49 کا جذر لیں۔
x=\frac{5±7}{2}
-5 کا مُخالف 5 ہے۔
x=\frac{12}{2}
جب ± جمع ہو تو اب مساوات x=\frac{5±7}{2} کو حل کریں۔ 5 کو 7 میں شامل کریں۔
x=6
12 کو 2 سے تقسیم کریں۔
x=-\frac{2}{2}
جب ± منفی ہو تو اب مساوات x=\frac{5±7}{2} کو حل کریں۔ 7 کو 5 میں سے منہا کریں۔
x=-1
-2 کو 2 سے تقسیم کریں۔
x=6 x=-1
مساوات اب حل ہو گئی ہے۔
\left(x-2\right)x=\left(x+2\right)\times 3
جبکہ زیرو کے ساتھ تقسیم واضح نہیں کی گئی ہے تو متغیرہ x اقدار -2,2,3 میں سے کسی کے بھی مساوی نہیں ہو سکتا۔ مساوات کی دونوں اطراف کو \left(x-3\right)\left(x-2\right)\left(x+2\right) سے ضرب دیں، x^{2}-x-6,x^{2}-5x+6 کا سب کم سے کم مشترک حاصل ضرب۔
x^{2}-2x=\left(x+2\right)\times 3
x-2 کو ایک سے x ضرب دینے کے لیئے منقسم خاصیت کا استعمال کریں۔
x^{2}-2x=3x+6
x+2 کو ایک سے 3 ضرب دینے کے لیئے منقسم خاصیت کا استعمال کریں۔
x^{2}-2x-3x=6
3x کو دونوں طرف سے منہا کریں۔
x^{2}-5x=6
-5x حاصل کرنے کے لئے -2x اور -3x کو یکجا کریں۔
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=6+\left(-\frac{5}{2}\right)^{2}
2 سے -\frac{5}{2} حاصل کرنے کے لیے، -5 کو x اصطلاح کے کو ایفیشنٹ سے تقسیم کریں۔ پھر -\frac{5}{2} کے مربع کو مساوات کی دونوں جانب جمع کریں۔ یہ مرحلہ مساوات کی بائیں ہاتھ کی جانب کو ایک مکمل مربع بناتا ہے۔
x^{2}-5x+\frac{25}{4}=6+\frac{25}{4}
کسر کا نیومیریٹر اور ڈینومینیٹر دونوں پر مربع لگا کر -\frac{5}{2} کو مربع کریں۔
x^{2}-5x+\frac{25}{4}=\frac{49}{4}
6 کو \frac{25}{4} میں شامل کریں۔
\left(x-\frac{5}{2}\right)^{2}=\frac{49}{4}
فیکٹر x^{2}-5x+\frac{25}{4}۔ عمومی طور پر جب x^{2}+bx+c ایک کامل مربع ہوگا تو اسے ہمیشہ \left(x+\frac{b}{2}\right)^{2} کی طرح فیکٹر کیا جا سکتا ہے۔
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
مساوات کی دونوں اطراف کا جذر لیں۔
x-\frac{5}{2}=\frac{7}{2} x-\frac{5}{2}=-\frac{7}{2}
سادہ کریں۔
x=6 x=-1
مساوات کے دونوں اطراف سے \frac{5}{2} کو شامل کریں۔