جائزہ ليں
\frac{144}{x^{7}}+\frac{600}{x^{11}}+\frac{240}{x^{17}}
w.r.t. x میں فرق کریں
-\frac{1008}{x^{8}}-\frac{6600}{x^{12}}-\frac{4080}{x^{18}}
حصہ
کلپ بورڈ پر کاپی کیا گیا
\left(3x^{-6}+12\right)\frac{\mathrm{d}}{\mathrm{d}x}(-5x^{-10}-8)+\left(-5x^{-10}-8\right)\frac{\mathrm{d}}{\mathrm{d}x}(3x^{-6}+12)
کسی بھی دو قبل امتیاز افعال کے لیے، دو افعال کی مصنوعہ کا مشتق دوسرے افعال کے مشتق کے مرتبہ کا پہلا فعل ہے، اس کے ساتھ ہی دوسرے فعل کے پہلے کا مشتق ہے۔
\left(3x^{-6}+12\right)\left(-10\right)\left(-5\right)x^{-10-1}+\left(-5x^{-10}-8\right)\left(-6\right)\times 3x^{-6-1}
کثیر رقمی کا مشتق اس کی اصطلاحات کے مشتق کا کل میزان ہے۔ کسی بھی مستقل اصطلاح کا مشتق 0 ہے۔ ax^{n} کا مشتق nax^{n-1} ہے۔
\left(3x^{-6}+12\right)\times 50x^{-11}+\left(-5x^{-10}-8\right)\left(-18\right)x^{-7}
سادہ کریں۔
3x^{-6}\times 50x^{-11}+12\times 50x^{-11}+\left(-5x^{-10}-8\right)\left(-18\right)x^{-7}
3x^{-6}+12 کو 50x^{-11} مرتبہ ضرب دیں۔
3x^{-6}\times 50x^{-11}+12\times 50x^{-11}-5x^{-10}\left(-18\right)x^{-7}-8\left(-18\right)x^{-7}
-5x^{-10}-8 کو -18x^{-7} مرتبہ ضرب دیں۔
50\times 3x^{-6-11}+50\times 12x^{-11}-5\left(-18\right)x^{-10-7}-8\left(-18\right)x^{-7}
ایک سی بنیاد کی پاورز کو ضرب دینے کے لیئے، ان کی قوتوں کو شامل کریں۔
150x^{-17}+600x^{-11}+90x^{-17}+144x^{-7}
سادہ کریں۔
مثالیں
دوطرفہ مساوات
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
لکیری مساوات
y = 3x + 4
حساب
699 * 533
میٹرکس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
بیک وقت مساوات
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمايُز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
انضمام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
حدود
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}