اہم مواد پر چھوڑ دیں
n کے لئے حل کریں
Tick mark Image

ویب سرچ سے اسی طرح کے مسائل

حصہ

32n=8\times 4n^{2}
جبکہ زیرو کے ساتھ تقسیم واضح نہیں کی گئی ہے تو متغیرہ n 0 کے مساوی نہیں ہو سکتا۔ مساوات کی دونوں اطراف کو 24n سے ضرب دیں، 24n,3n کا سب کم سے کم مشترک حاصل ضرب۔
32n=32n^{2}
32 حاصل کرنے کے لئے 8 اور 4 کو ضرب دیں۔
32n-32n^{2}=0
32n^{2} کو دونوں طرف سے منہا کریں۔
n\left(32-32n\right)=0
اجزائے ضربی میں تقسیم کریں n۔
n=0 n=1
مساوات کا حل تلاش کرنے کیلئے، n=0 اور 32-32n=0 حل کریں۔
n=1
متغیرہ n اقدار 0 کے مساوی نہیں ہو سکتا۔
32n=8\times 4n^{2}
جبکہ زیرو کے ساتھ تقسیم واضح نہیں کی گئی ہے تو متغیرہ n 0 کے مساوی نہیں ہو سکتا۔ مساوات کی دونوں اطراف کو 24n سے ضرب دیں، 24n,3n کا سب کم سے کم مشترک حاصل ضرب۔
32n=32n^{2}
32 حاصل کرنے کے لئے 8 اور 4 کو ضرب دیں۔
32n-32n^{2}=0
32n^{2} کو دونوں طرف سے منہا کریں۔
-32n^{2}+32n=0
اس فارم ax^{2}+bx+c=0 کی تمام مساواتیں مربعی فارمولہ: \frac{-b±\sqrt{b^{2}-4ac}}{2a} کو استعمال کرتے ہوئے حل کی جاسکتی ہیں۔ مربعی فارمولا دو طرح کے حل فراہم کرتا ہے۔ ایک جب ± جمع شدہ ہوتا ہے اور تب جب یہ منہا کردہ ہوتا ہے۔
n=\frac{-32±\sqrt{32^{2}}}{2\left(-32\right)}
یہ مساوات معیاری وضع میں ہے: ax^{2}+bx+c=0۔ مربعی فارمولا \frac{-b±\sqrt{b^{2}-4ac}}{2a} میں a کے لئے -32 کو، b کے لئے 32 کو اور c کے لئے 0 کو متبادل کریں۔
n=\frac{-32±32}{2\left(-32\right)}
32^{2} کا جذر لیں۔
n=\frac{-32±32}{-64}
2 کو -32 مرتبہ ضرب دیں۔
n=\frac{0}{-64}
جب ± جمع ہو تو اب مساوات n=\frac{-32±32}{-64} کو حل کریں۔ -32 کو 32 میں شامل کریں۔
n=0
0 کو -64 سے تقسیم کریں۔
n=-\frac{64}{-64}
جب ± منفی ہو تو اب مساوات n=\frac{-32±32}{-64} کو حل کریں۔ 32 کو -32 میں سے منہا کریں۔
n=1
-64 کو -64 سے تقسیم کریں۔
n=0 n=1
مساوات اب حل ہو گئی ہے۔
n=1
متغیرہ n اقدار 0 کے مساوی نہیں ہو سکتا۔
32n=8\times 4n^{2}
جبکہ زیرو کے ساتھ تقسیم واضح نہیں کی گئی ہے تو متغیرہ n 0 کے مساوی نہیں ہو سکتا۔ مساوات کی دونوں اطراف کو 24n سے ضرب دیں، 24n,3n کا سب کم سے کم مشترک حاصل ضرب۔
32n=32n^{2}
32 حاصل کرنے کے لئے 8 اور 4 کو ضرب دیں۔
32n-32n^{2}=0
32n^{2} کو دونوں طرف سے منہا کریں۔
-32n^{2}+32n=0
اس قسم کی مربعی قواعد مربع مکمل کرنے کے بعد حل ہوسکتی ہیں۔ مربع کو مکمل کرنے کے لیئے، مساوات کو پہلے اس شکل میں ہونا ضروری ہے x^{2}+bx=c۔
\frac{-32n^{2}+32n}{-32}=\frac{0}{-32}
-32 سے دونوں اطراف کو تقسیم کریں۔
n^{2}+\frac{32}{-32}n=\frac{0}{-32}
-32 سے تقسیم کرنا -32 سے ضرب کو کالعدم کرتا ہے۔
n^{2}-n=\frac{0}{-32}
32 کو -32 سے تقسیم کریں۔
n^{2}-n=0
0 کو -32 سے تقسیم کریں۔
n^{2}-n+\left(-\frac{1}{2}\right)^{2}=\left(-\frac{1}{2}\right)^{2}
2 سے -\frac{1}{2} حاصل کرنے کے لیے، -1 کو x اصطلاح کے کو ایفیشنٹ سے تقسیم کریں۔ پھر -\frac{1}{2} کے مربع کو مساوات کی دونوں جانب جمع کریں۔ یہ مرحلہ مساوات کی بائیں ہاتھ کی جانب کو ایک مکمل مربع بناتا ہے۔
n^{2}-n+\frac{1}{4}=\frac{1}{4}
کسر کا نیومیریٹر اور ڈینومینیٹر دونوں پر مربع لگا کر -\frac{1}{2} کو مربع کریں۔
\left(n-\frac{1}{2}\right)^{2}=\frac{1}{4}
فیکٹر n^{2}-n+\frac{1}{4}۔ عمومی طور پر جب x^{2}+bx+c ایک کامل مربع ہوگا تو اسے ہمیشہ \left(x+\frac{b}{2}\right)^{2} کی طرح فیکٹر کیا جا سکتا ہے۔
\sqrt{\left(n-\frac{1}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
مساوات کی دونوں اطراف کا جذر لیں۔
n-\frac{1}{2}=\frac{1}{2} n-\frac{1}{2}=-\frac{1}{2}
سادہ کریں۔
n=1 n=0
مساوات کے دونوں اطراف سے \frac{1}{2} کو شامل کریں۔
n=1
متغیرہ n اقدار 0 کے مساوی نہیں ہو سکتا۔