w.r.t. t میں فرق کریں
-\frac{20}{\left(5t-1\right)^{2}}
جائزہ ليں
\frac{20t}{5t-1}
حصہ
کلپ بورڈ پر کاپی کیا گیا
\frac{\left(5t^{1}-1\right)\frac{\mathrm{d}}{\mathrm{d}t}(20t^{1})-20t^{1}\frac{\mathrm{d}}{\mathrm{d}t}(5t^{1}-1)}{\left(5t^{1}-1\right)^{2}}
کسی بھی دو مختلف عوامل کے لیے، دو عوامل کے مخلوط کے مشتق ڈینومینیٹر مرتبہ نومیریٹر کا مشتق نیومیریٹر مرتبہ ڈینومینیٹر کا مشتق ہے، تمام کے تمام مربع کیئے گئے ڈینومیل سے تقسیم کیئے گئے ہیں۔
\frac{\left(5t^{1}-1\right)\times 20t^{1-1}-20t^{1}\times 5t^{1-1}}{\left(5t^{1}-1\right)^{2}}
کثیر رقمی کا مشتق اس کی اصطلاحات کے مشتق کا کل میزان ہے۔ کسی بھی مستقل اصطلاح کا مشتق 0 ہے۔ ax^{n} کا مشتق nax^{n-1} ہے۔
\frac{\left(5t^{1}-1\right)\times 20t^{0}-20t^{1}\times 5t^{0}}{\left(5t^{1}-1\right)^{2}}
حساب کریں۔
\frac{5t^{1}\times 20t^{0}-20t^{0}-20t^{1}\times 5t^{0}}{\left(5t^{1}-1\right)^{2}}
منقسم خاصیت کا استعمال کرتے ہوئے توسیع کریں۔
\frac{5\times 20t^{1}-20t^{0}-20\times 5t^{1}}{\left(5t^{1}-1\right)^{2}}
ایک سی بنیاد کی پاورز کو ضرب دینے کے لیئے، ان کی قوتوں کو شامل کریں۔
\frac{100t^{1}-20t^{0}-100t^{1}}{\left(5t^{1}-1\right)^{2}}
حساب کریں۔
\frac{\left(100-100\right)t^{1}-20t^{0}}{\left(5t^{1}-1\right)^{2}}
ایک جیسی اصطلاحات یکجا کریں۔
\frac{-20t^{0}}{\left(5t^{1}-1\right)^{2}}
100 کو 100 میں سے منہا کریں۔
\frac{-20t^{0}}{\left(5t-1\right)^{2}}
کسی بھی اصطلاح کے لئے t، t^{1}=t۔
\frac{-20}{\left(5t-1\right)^{2}}
کسی بھی اصطلاح t کے لئے سوائے 0، t^{0}=1۔
مثالیں
دوطرفہ مساوات
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
لکیری مساوات
y = 3x + 4
حساب
699 * 533
میٹرکس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
بیک وقت مساوات
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمايُز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
انضمام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
حدود
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}