x کے لئے حل کریں (complex solution)
x\in \mathrm{C}\setminus 4,-4,\frac{1}{2},1
x کے لئے حل کریں
x\in \mathrm{R}\setminus 4,-4,1,\frac{1}{2}
مخطط
حصہ
کلپ بورڈ پر کاپی کیا گیا
\left(-1+3x-2x^{2}\right)\left(2x-1\right)\times \frac{x^{2}+3x-4}{2x^{2}-3x+1}=-\left(-1+x\right)\left(-1+2x\right)\left(4+x\right)
جبکہ زیرو کے ساتھ تقسیم واضح نہیں کی گئی ہے تو متغیرہ x اقدار -4,\frac{1}{2},1,4 میں سے کسی کے بھی مساوی نہیں ہو سکتا۔ مساوات کی دونوں اطراف کو \left(x-4\right)\left(x-1\right)\left(2x-1\right)\left(x+4\right) سے ضرب دیں، 16-x^{2},2x^{2}-3x+1,4-x کا سب کم سے کم مشترک حاصل ضرب۔
\frac{\left(-1+3x-2x^{2}\right)\left(x^{2}+3x-4\right)}{2x^{2}-3x+1}\left(2x-1\right)=-\left(-1+x\right)\left(-1+2x\right)\left(4+x\right)
بطور واحد کسر \left(-1+3x-2x^{2}\right)\times \frac{x^{2}+3x-4}{2x^{2}-3x+1} ایکسپریس
2\times \frac{\left(-1+3x-2x^{2}\right)\left(x^{2}+3x-4\right)}{2x^{2}-3x+1}x-\frac{\left(-1+3x-2x^{2}\right)\left(x^{2}+3x-4\right)}{2x^{2}-3x+1}=-\left(-1+x\right)\left(-1+2x\right)\left(4+x\right)
\frac{\left(-1+3x-2x^{2}\right)\left(x^{2}+3x-4\right)}{2x^{2}-3x+1} کو ایک سے 2x-1 ضرب دینے کے لیئے منقسم خاصیت کا استعمال کریں۔
2\times \frac{16x^{2}-15x+4-3x^{3}-2x^{4}}{2x^{2}-3x+1}x-\frac{\left(-1+3x-2x^{2}\right)\left(x^{2}+3x-4\right)}{2x^{2}-3x+1}=-\left(-1+x\right)\left(-1+2x\right)\left(4+x\right)
-1+3x-2x^{2} کو ایک سے x^{2}+3x-4 ضرب دینے کے لیئے منقسم خاصیت کا استعمال کریں اور ایک جیسی اصطلاحات کو یکجا کریں۔
\frac{2\left(16x^{2}-15x+4-3x^{3}-2x^{4}\right)}{2x^{2}-3x+1}x-\frac{\left(-1+3x-2x^{2}\right)\left(x^{2}+3x-4\right)}{2x^{2}-3x+1}=-\left(-1+x\right)\left(-1+2x\right)\left(4+x\right)
بطور واحد کسر 2\times \frac{16x^{2}-15x+4-3x^{3}-2x^{4}}{2x^{2}-3x+1} ایکسپریس
\frac{2\left(16x^{2}-15x+4-3x^{3}-2x^{4}\right)x}{2x^{2}-3x+1}-\frac{\left(-1+3x-2x^{2}\right)\left(x^{2}+3x-4\right)}{2x^{2}-3x+1}=-\left(-1+x\right)\left(-1+2x\right)\left(4+x\right)
بطور واحد کسر \frac{2\left(16x^{2}-15x+4-3x^{3}-2x^{4}\right)}{2x^{2}-3x+1}x ایکسپریس
\frac{2\left(16x^{2}-15x+4-3x^{3}-2x^{4}\right)x}{2x^{2}-3x+1}-\frac{16x^{2}-15x+4-3x^{3}-2x^{4}}{2x^{2}-3x+1}=-\left(-1+x\right)\left(-1+2x\right)\left(4+x\right)
-1+3x-2x^{2} کو ایک سے x^{2}+3x-4 ضرب دینے کے لیئے منقسم خاصیت کا استعمال کریں اور ایک جیسی اصطلاحات کو یکجا کریں۔
\frac{2\left(16x^{2}-15x+4-3x^{3}-2x^{4}\right)x-\left(16x^{2}-15x+4-3x^{3}-2x^{4}\right)}{2x^{2}-3x+1}=-\left(-1+x\right)\left(-1+2x\right)\left(4+x\right)
چونکہ \frac{2\left(16x^{2}-15x+4-3x^{3}-2x^{4}\right)x}{2x^{2}-3x+1} اور \frac{16x^{2}-15x+4-3x^{3}-2x^{4}}{2x^{2}-3x+1} کا نسب نما یکساں ہے، انہیں ان کے شمار کنندگان کے ذریعے تفریق کرکے تفریق کریں۔
\frac{32x^{3}-30x^{2}+8x-6x^{4}-4x^{5}-16x^{2}+15x-4+3x^{3}+2x^{4}}{2x^{2}-3x+1}=-\left(-1+x\right)\left(-1+2x\right)\left(4+x\right)
2\left(16x^{2}-15x+4-3x^{3}-2x^{4}\right)x-\left(16x^{2}-15x+4-3x^{3}-2x^{4}\right) میں ضرب دیں۔
\frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4}{2x^{2}-3x+1}=-\left(-1+x\right)\left(-1+2x\right)\left(4+x\right)
32x^{3}-30x^{2}+8x-6x^{4}-4x^{5}-16x^{2}+15x-4+3x^{3}+2x^{4} میں اصطلاح کی طرح یکجا کریں۔
\frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4}{2x^{2}-3x+1}=\left(1-x\right)\left(-1+2x\right)\left(4+x\right)
-1 کو ایک سے -1+x ضرب دینے کے لیئے منقسم خاصیت کا استعمال کریں۔
\frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4}{2x^{2}-3x+1}=\left(-1+3x-2x^{2}\right)\left(4+x\right)
1-x کو ایک سے -1+2x ضرب دینے کے لیئے منقسم خاصیت کا استعمال کریں اور ایک جیسی اصطلاحات کو یکجا کریں۔
\frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4}{2x^{2}-3x+1}=-4+11x-5x^{2}-2x^{3}
-1+3x-2x^{2} کو ایک سے 4+x ضرب دینے کے لیئے منقسم خاصیت کا استعمال کریں اور ایک جیسی اصطلاحات کو یکجا کریں۔
\frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4}{2x^{2}-3x+1}-\left(-4\right)=11x-5x^{2}-2x^{3}
-4 کو دونوں طرف سے منہا کریں۔
\frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4}{2x^{2}-3x+1}+4=11x-5x^{2}-2x^{3}
-4 کا مُخالف 4 ہے۔
\frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4}{\left(x-1\right)\left(2x-1\right)}+4=11x-5x^{2}-2x^{3}
عامل 2x^{2}-3x+1۔
\frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4}{\left(x-1\right)\left(2x-1\right)}+\frac{4\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)}=11x-5x^{2}-2x^{3}
اظہارات شامل یا منہا کرنے کے لئے، ان کے ایک جیسے ڈینومینیٹرز بنانے کے لئے ان میں توسیع کریں۔ 4 کو \frac{\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)} مرتبہ ضرب دیں۔
\frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4+4\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)}=11x-5x^{2}-2x^{3}
چونکہ \frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4}{\left(x-1\right)\left(2x-1\right)} اور \frac{4\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)} کا نسب نما یکساں ہے، انہیں ان کے شمار کنندگان کے ذریعے شامل کرکے جمع کریں۔
\frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4+8x^{2}-4x-8x+4}{\left(x-1\right)\left(2x-1\right)}=11x-5x^{2}-2x^{3}
35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4+4\left(x-1\right)\left(2x-1\right) میں ضرب دیں۔
\frac{35x^{3}-38x^{2}+11x-4x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)}=11x-5x^{2}-2x^{3}
35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4+8x^{2}-4x-8x+4 میں اصطلاح کی طرح یکجا کریں۔
\frac{35x^{3}-38x^{2}+11x-4x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)}-11x=-5x^{2}-2x^{3}
11x کو دونوں طرف سے منہا کریں۔
\frac{35x^{3}-38x^{2}+11x-4x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)}+\frac{-11x\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)}=-5x^{2}-2x^{3}
اظہارات شامل یا منہا کرنے کے لئے، ان کے ایک جیسے ڈینومینیٹرز بنانے کے لئے ان میں توسیع کریں۔ -11x کو \frac{\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)} مرتبہ ضرب دیں۔
\frac{35x^{3}-38x^{2}+11x-4x^{4}-4x^{5}-11x\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)}=-5x^{2}-2x^{3}
چونکہ \frac{35x^{3}-38x^{2}+11x-4x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)} اور \frac{-11x\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)} کا نسب نما یکساں ہے، انہیں ان کے شمار کنندگان کے ذریعے شامل کرکے جمع کریں۔
\frac{35x^{3}-38x^{2}+11x-4x^{4}-4x^{5}-22x^{3}+11x^{2}+22x^{2}-11x}{\left(x-1\right)\left(2x-1\right)}=-5x^{2}-2x^{3}
35x^{3}-38x^{2}+11x-4x^{4}-4x^{5}-11x\left(x-1\right)\left(2x-1\right) میں ضرب دیں۔
\frac{13x^{3}-5x^{2}-4x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)}=-5x^{2}-2x^{3}
35x^{3}-38x^{2}+11x-4x^{4}-4x^{5}-22x^{3}+11x^{2}+22x^{2}-11x میں اصطلاح کی طرح یکجا کریں۔
\frac{13x^{3}-5x^{2}-4x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)}+5x^{2}=-2x^{3}
دونوں اطراف میں 5x^{2} شامل کریں۔
\frac{13x^{3}-5x^{2}-4x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)}+\frac{5x^{2}\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)}=-2x^{3}
اظہارات شامل یا منہا کرنے کے لئے، ان کے ایک جیسے ڈینومینیٹرز بنانے کے لئے ان میں توسیع کریں۔ 5x^{2} کو \frac{\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)} مرتبہ ضرب دیں۔
\frac{13x^{3}-5x^{2}-4x^{4}-4x^{5}+5x^{2}\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)}=-2x^{3}
چونکہ \frac{13x^{3}-5x^{2}-4x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)} اور \frac{5x^{2}\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)} کا نسب نما یکساں ہے، انہیں ان کے شمار کنندگان کے ذریعے شامل کرکے جمع کریں۔
\frac{13x^{3}-5x^{2}-4x^{4}-4x^{5}+10x^{4}-5x^{3}-10x^{3}+5x^{2}}{\left(x-1\right)\left(2x-1\right)}=-2x^{3}
13x^{3}-5x^{2}-4x^{4}-4x^{5}+5x^{2}\left(x-1\right)\left(2x-1\right) میں ضرب دیں۔
\frac{-2x^{3}+6x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)}=-2x^{3}
13x^{3}-5x^{2}-4x^{4}-4x^{5}+10x^{4}-5x^{3}-10x^{3}+5x^{2} میں اصطلاح کی طرح یکجا کریں۔
\frac{-2x^{3}+6x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)}+2x^{3}=0
دونوں اطراف میں 2x^{3} شامل کریں۔
\frac{-2x^{3}+6x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)}+\frac{2x^{3}\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)}=0
اظہارات شامل یا منہا کرنے کے لئے، ان کے ایک جیسے ڈینومینیٹرز بنانے کے لئے ان میں توسیع کریں۔ 2x^{3} کو \frac{\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)} مرتبہ ضرب دیں۔
\frac{-2x^{3}+6x^{4}-4x^{5}+2x^{3}\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)}=0
چونکہ \frac{-2x^{3}+6x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)} اور \frac{2x^{3}\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)} کا نسب نما یکساں ہے، انہیں ان کے شمار کنندگان کے ذریعے شامل کرکے جمع کریں۔
\frac{-2x^{3}+6x^{4}-4x^{5}+4x^{5}-2x^{4}-4x^{4}+2x^{3}}{\left(x-1\right)\left(2x-1\right)}=0
-2x^{3}+6x^{4}-4x^{5}+2x^{3}\left(x-1\right)\left(2x-1\right) میں ضرب دیں۔
\frac{0}{\left(x-1\right)\left(2x-1\right)}=0
-2x^{3}+6x^{4}-4x^{5}+4x^{5}-2x^{4}-4x^{4}+2x^{3} میں اصطلاح کی طرح یکجا کریں۔
0=0
جبکہ زیرو کے ساتھ تقسیم واضح نہیں کی گئی ہے تو متغیرہ x اقدار \frac{1}{2},1 میں سے کسی کے بھی مساوی نہیں ہو سکتا۔ \left(x-1\right)\left(2x-1\right) سے مساوات کی دونوں اطراف کو ضرب دیں۔
x\in \mathrm{C}
کسی x کے لئے یہ صحیح ہے۔
x\in \mathrm{C}\setminus -4,\frac{1}{2},1,4
متغیرہ x اقدار \frac{1}{2},1,-4,4 میں سے کسی کے بھی مساوی نہیں ہو سکتا۔
\left(-1+3x-2x^{2}\right)\left(2x-1\right)\times \frac{x^{2}+3x-4}{2x^{2}-3x+1}=-\left(-1+x\right)\left(-1+2x\right)\left(4+x\right)
جبکہ زیرو کے ساتھ تقسیم واضح نہیں کی گئی ہے تو متغیرہ x اقدار -4,\frac{1}{2},1,4 میں سے کسی کے بھی مساوی نہیں ہو سکتا۔ مساوات کی دونوں اطراف کو \left(x-4\right)\left(x-1\right)\left(2x-1\right)\left(x+4\right) سے ضرب دیں، 16-x^{2},2x^{2}-3x+1,4-x کا سب کم سے کم مشترک حاصل ضرب۔
\frac{\left(-1+3x-2x^{2}\right)\left(x^{2}+3x-4\right)}{2x^{2}-3x+1}\left(2x-1\right)=-\left(-1+x\right)\left(-1+2x\right)\left(4+x\right)
بطور واحد کسر \left(-1+3x-2x^{2}\right)\times \frac{x^{2}+3x-4}{2x^{2}-3x+1} ایکسپریس
2\times \frac{\left(-1+3x-2x^{2}\right)\left(x^{2}+3x-4\right)}{2x^{2}-3x+1}x-\frac{\left(-1+3x-2x^{2}\right)\left(x^{2}+3x-4\right)}{2x^{2}-3x+1}=-\left(-1+x\right)\left(-1+2x\right)\left(4+x\right)
\frac{\left(-1+3x-2x^{2}\right)\left(x^{2}+3x-4\right)}{2x^{2}-3x+1} کو ایک سے 2x-1 ضرب دینے کے لیئے منقسم خاصیت کا استعمال کریں۔
2\times \frac{16x^{2}-15x+4-3x^{3}-2x^{4}}{2x^{2}-3x+1}x-\frac{\left(-1+3x-2x^{2}\right)\left(x^{2}+3x-4\right)}{2x^{2}-3x+1}=-\left(-1+x\right)\left(-1+2x\right)\left(4+x\right)
-1+3x-2x^{2} کو ایک سے x^{2}+3x-4 ضرب دینے کے لیئے منقسم خاصیت کا استعمال کریں اور ایک جیسی اصطلاحات کو یکجا کریں۔
\frac{2\left(16x^{2}-15x+4-3x^{3}-2x^{4}\right)}{2x^{2}-3x+1}x-\frac{\left(-1+3x-2x^{2}\right)\left(x^{2}+3x-4\right)}{2x^{2}-3x+1}=-\left(-1+x\right)\left(-1+2x\right)\left(4+x\right)
بطور واحد کسر 2\times \frac{16x^{2}-15x+4-3x^{3}-2x^{4}}{2x^{2}-3x+1} ایکسپریس
\frac{2\left(16x^{2}-15x+4-3x^{3}-2x^{4}\right)x}{2x^{2}-3x+1}-\frac{\left(-1+3x-2x^{2}\right)\left(x^{2}+3x-4\right)}{2x^{2}-3x+1}=-\left(-1+x\right)\left(-1+2x\right)\left(4+x\right)
بطور واحد کسر \frac{2\left(16x^{2}-15x+4-3x^{3}-2x^{4}\right)}{2x^{2}-3x+1}x ایکسپریس
\frac{2\left(16x^{2}-15x+4-3x^{3}-2x^{4}\right)x}{2x^{2}-3x+1}-\frac{16x^{2}-15x+4-3x^{3}-2x^{4}}{2x^{2}-3x+1}=-\left(-1+x\right)\left(-1+2x\right)\left(4+x\right)
-1+3x-2x^{2} کو ایک سے x^{2}+3x-4 ضرب دینے کے لیئے منقسم خاصیت کا استعمال کریں اور ایک جیسی اصطلاحات کو یکجا کریں۔
\frac{2\left(16x^{2}-15x+4-3x^{3}-2x^{4}\right)x-\left(16x^{2}-15x+4-3x^{3}-2x^{4}\right)}{2x^{2}-3x+1}=-\left(-1+x\right)\left(-1+2x\right)\left(4+x\right)
چونکہ \frac{2\left(16x^{2}-15x+4-3x^{3}-2x^{4}\right)x}{2x^{2}-3x+1} اور \frac{16x^{2}-15x+4-3x^{3}-2x^{4}}{2x^{2}-3x+1} کا نسب نما یکساں ہے، انہیں ان کے شمار کنندگان کے ذریعے تفریق کرکے تفریق کریں۔
\frac{32x^{3}-30x^{2}+8x-6x^{4}-4x^{5}-16x^{2}+15x-4+3x^{3}+2x^{4}}{2x^{2}-3x+1}=-\left(-1+x\right)\left(-1+2x\right)\left(4+x\right)
2\left(16x^{2}-15x+4-3x^{3}-2x^{4}\right)x-\left(16x^{2}-15x+4-3x^{3}-2x^{4}\right) میں ضرب دیں۔
\frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4}{2x^{2}-3x+1}=-\left(-1+x\right)\left(-1+2x\right)\left(4+x\right)
32x^{3}-30x^{2}+8x-6x^{4}-4x^{5}-16x^{2}+15x-4+3x^{3}+2x^{4} میں اصطلاح کی طرح یکجا کریں۔
\frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4}{2x^{2}-3x+1}=\left(1-x\right)\left(-1+2x\right)\left(4+x\right)
-1 کو ایک سے -1+x ضرب دینے کے لیئے منقسم خاصیت کا استعمال کریں۔
\frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4}{2x^{2}-3x+1}=\left(-1+3x-2x^{2}\right)\left(4+x\right)
1-x کو ایک سے -1+2x ضرب دینے کے لیئے منقسم خاصیت کا استعمال کریں اور ایک جیسی اصطلاحات کو یکجا کریں۔
\frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4}{2x^{2}-3x+1}=-4+11x-5x^{2}-2x^{3}
-1+3x-2x^{2} کو ایک سے 4+x ضرب دینے کے لیئے منقسم خاصیت کا استعمال کریں اور ایک جیسی اصطلاحات کو یکجا کریں۔
\frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4}{2x^{2}-3x+1}-\left(-4\right)=11x-5x^{2}-2x^{3}
-4 کو دونوں طرف سے منہا کریں۔
\frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4}{2x^{2}-3x+1}+4=11x-5x^{2}-2x^{3}
-4 کا مُخالف 4 ہے۔
\frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4}{\left(x-1\right)\left(2x-1\right)}+4=11x-5x^{2}-2x^{3}
عامل 2x^{2}-3x+1۔
\frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4}{\left(x-1\right)\left(2x-1\right)}+\frac{4\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)}=11x-5x^{2}-2x^{3}
اظہارات شامل یا منہا کرنے کے لئے، ان کے ایک جیسے ڈینومینیٹرز بنانے کے لئے ان میں توسیع کریں۔ 4 کو \frac{\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)} مرتبہ ضرب دیں۔
\frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4+4\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)}=11x-5x^{2}-2x^{3}
چونکہ \frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4}{\left(x-1\right)\left(2x-1\right)} اور \frac{4\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)} کا نسب نما یکساں ہے، انہیں ان کے شمار کنندگان کے ذریعے شامل کرکے جمع کریں۔
\frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4+8x^{2}-4x-8x+4}{\left(x-1\right)\left(2x-1\right)}=11x-5x^{2}-2x^{3}
35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4+4\left(x-1\right)\left(2x-1\right) میں ضرب دیں۔
\frac{35x^{3}-38x^{2}+11x-4x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)}=11x-5x^{2}-2x^{3}
35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4+8x^{2}-4x-8x+4 میں اصطلاح کی طرح یکجا کریں۔
\frac{35x^{3}-38x^{2}+11x-4x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)}-11x=-5x^{2}-2x^{3}
11x کو دونوں طرف سے منہا کریں۔
\frac{35x^{3}-38x^{2}+11x-4x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)}+\frac{-11x\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)}=-5x^{2}-2x^{3}
اظہارات شامل یا منہا کرنے کے لئے، ان کے ایک جیسے ڈینومینیٹرز بنانے کے لئے ان میں توسیع کریں۔ -11x کو \frac{\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)} مرتبہ ضرب دیں۔
\frac{35x^{3}-38x^{2}+11x-4x^{4}-4x^{5}-11x\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)}=-5x^{2}-2x^{3}
چونکہ \frac{35x^{3}-38x^{2}+11x-4x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)} اور \frac{-11x\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)} کا نسب نما یکساں ہے، انہیں ان کے شمار کنندگان کے ذریعے شامل کرکے جمع کریں۔
\frac{35x^{3}-38x^{2}+11x-4x^{4}-4x^{5}-22x^{3}+11x^{2}+22x^{2}-11x}{\left(x-1\right)\left(2x-1\right)}=-5x^{2}-2x^{3}
35x^{3}-38x^{2}+11x-4x^{4}-4x^{5}-11x\left(x-1\right)\left(2x-1\right) میں ضرب دیں۔
\frac{13x^{3}-5x^{2}-4x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)}=-5x^{2}-2x^{3}
35x^{3}-38x^{2}+11x-4x^{4}-4x^{5}-22x^{3}+11x^{2}+22x^{2}-11x میں اصطلاح کی طرح یکجا کریں۔
\frac{13x^{3}-5x^{2}-4x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)}+5x^{2}=-2x^{3}
دونوں اطراف میں 5x^{2} شامل کریں۔
\frac{13x^{3}-5x^{2}-4x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)}+\frac{5x^{2}\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)}=-2x^{3}
اظہارات شامل یا منہا کرنے کے لئے، ان کے ایک جیسے ڈینومینیٹرز بنانے کے لئے ان میں توسیع کریں۔ 5x^{2} کو \frac{\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)} مرتبہ ضرب دیں۔
\frac{13x^{3}-5x^{2}-4x^{4}-4x^{5}+5x^{2}\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)}=-2x^{3}
چونکہ \frac{13x^{3}-5x^{2}-4x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)} اور \frac{5x^{2}\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)} کا نسب نما یکساں ہے، انہیں ان کے شمار کنندگان کے ذریعے شامل کرکے جمع کریں۔
\frac{13x^{3}-5x^{2}-4x^{4}-4x^{5}+10x^{4}-5x^{3}-10x^{3}+5x^{2}}{\left(x-1\right)\left(2x-1\right)}=-2x^{3}
13x^{3}-5x^{2}-4x^{4}-4x^{5}+5x^{2}\left(x-1\right)\left(2x-1\right) میں ضرب دیں۔
\frac{-2x^{3}+6x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)}=-2x^{3}
13x^{3}-5x^{2}-4x^{4}-4x^{5}+10x^{4}-5x^{3}-10x^{3}+5x^{2} میں اصطلاح کی طرح یکجا کریں۔
\frac{-2x^{3}+6x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)}+2x^{3}=0
دونوں اطراف میں 2x^{3} شامل کریں۔
\frac{-2x^{3}+6x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)}+\frac{2x^{3}\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)}=0
اظہارات شامل یا منہا کرنے کے لئے، ان کے ایک جیسے ڈینومینیٹرز بنانے کے لئے ان میں توسیع کریں۔ 2x^{3} کو \frac{\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)} مرتبہ ضرب دیں۔
\frac{-2x^{3}+6x^{4}-4x^{5}+2x^{3}\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)}=0
چونکہ \frac{-2x^{3}+6x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)} اور \frac{2x^{3}\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)} کا نسب نما یکساں ہے، انہیں ان کے شمار کنندگان کے ذریعے شامل کرکے جمع کریں۔
\frac{-2x^{3}+6x^{4}-4x^{5}+4x^{5}-2x^{4}-4x^{4}+2x^{3}}{\left(x-1\right)\left(2x-1\right)}=0
-2x^{3}+6x^{4}-4x^{5}+2x^{3}\left(x-1\right)\left(2x-1\right) میں ضرب دیں۔
\frac{0}{\left(x-1\right)\left(2x-1\right)}=0
-2x^{3}+6x^{4}-4x^{5}+4x^{5}-2x^{4}-4x^{4}+2x^{3} میں اصطلاح کی طرح یکجا کریں۔
0=0
جبکہ زیرو کے ساتھ تقسیم واضح نہیں کی گئی ہے تو متغیرہ x اقدار \frac{1}{2},1 میں سے کسی کے بھی مساوی نہیں ہو سکتا۔ \left(x-1\right)\left(2x-1\right) سے مساوات کی دونوں اطراف کو ضرب دیں۔
x\in \mathrm{R}
کسی x کے لئے یہ صحیح ہے۔
x\in \mathrm{R}\setminus -4,\frac{1}{2},1,4
متغیرہ x اقدار \frac{1}{2},1,-4,4 میں سے کسی کے بھی مساوی نہیں ہو سکتا۔
مثالیں
دوطرفہ مساوات
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
لکیری مساوات
y = 3x + 4
حساب
699 * 533
میٹرکس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
بیک وقت مساوات
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمايُز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
انضمام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
حدود
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}