اہم مواد پر چھوڑ دیں
x کے لئے حل کریں
Tick mark Image
مخطط

ویب سرچ سے اسی طرح کے مسائل

حصہ

\left(x-3\right)\times 2x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
جبکہ زیرو کے ساتھ تقسیم واضح نہیں کی گئی ہے تو متغیرہ x اقدار 3,4 میں سے کسی کے بھی مساوی نہیں ہو سکتا۔ مساوات کی دونوں اطراف کو \left(x-4\right)\left(x-3\right) سے ضرب دیں، x-4,x-3,x^{2}-7x+12 کا سب کم سے کم مشترک حاصل ضرب۔
\left(2x-6\right)x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
x-3 کو ایک سے 2 ضرب دینے کے لیئے منقسم خاصیت کا استعمال کریں۔
2x^{2}-6x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
2x-6 کو ایک سے x ضرب دینے کے لیئے منقسم خاصیت کا استعمال کریں۔
2x^{2}-6x+3x-12+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
x-4 کو ایک سے 3 ضرب دینے کے لیئے منقسم خاصیت کا استعمال کریں۔
2x^{2}-3x-12+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
-3x حاصل کرنے کے لئے -6x اور 3x کو یکجا کریں۔
2x^{2}-3x-12+\left(x^{2}-7x+12\right)\times 4=30+5x^{2}-36x
x-4 کو ایک سے x-3 ضرب دینے کے لیئے منقسم خاصیت کا استعمال کریں اور ایک جیسی اصطلاحات کو یکجا کریں۔
2x^{2}-3x-12+4x^{2}-28x+48=30+5x^{2}-36x
x^{2}-7x+12 کو ایک سے 4 ضرب دینے کے لیئے منقسم خاصیت کا استعمال کریں۔
6x^{2}-3x-12-28x+48=30+5x^{2}-36x
6x^{2} حاصل کرنے کے لئے 2x^{2} اور 4x^{2} کو یکجا کریں۔
6x^{2}-31x-12+48=30+5x^{2}-36x
-31x حاصل کرنے کے لئے -3x اور -28x کو یکجا کریں۔
6x^{2}-31x+36=30+5x^{2}-36x
36 حاصل کرنے کے لئے -12 اور 48 شامل کریں۔
6x^{2}-31x+36-30=5x^{2}-36x
30 کو دونوں طرف سے منہا کریں۔
6x^{2}-31x+6=5x^{2}-36x
6 حاصل کرنے کے لئے 36 کو 30 سے تفریق کریں۔
6x^{2}-31x+6-5x^{2}=-36x
5x^{2} کو دونوں طرف سے منہا کریں۔
x^{2}-31x+6=-36x
x^{2} حاصل کرنے کے لئے 6x^{2} اور -5x^{2} کو یکجا کریں۔
x^{2}-31x+6+36x=0
دونوں اطراف میں 36x شامل کریں۔
x^{2}+5x+6=0
5x حاصل کرنے کے لئے -31x اور 36x کو یکجا کریں۔
a+b=5 ab=6
مساوات حل کرنے کیلئے، فیکٹر x^{2}+5x+6 فالمولہ x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) استعمال کر رہا ہے۔ a اور b حاصل کرنے کی غرض سے، حل کرنے کیلئے سسٹم سیٹ کریں۔
1,6 2,3
چونکہ ab مثبت ہے، a اور b کی علامت یکساں ہے۔ چونکہ a+b مثبت ہے، a اور b بھی مثبت ہیں۔ ایسے تمام صحیح اعداد کے جوڑے درج کریں جن کا حاصل 6 ہوتا ہے۔
1+6=7 2+3=5
ہر جوڑے کی رقم کا حساب لگائیں۔
a=2 b=3
حل ایک جوڑا ہے جو میزان 5 دیتا ہے۔
\left(x+2\right)\left(x+3\right)
حاصل شدہ اقدار کا استعمال کر کے فیکٹر شدہ اظہار \left(x+a\right)\left(x+b\right) دوبارہ لکھیں۔
x=-2 x=-3
مساوات کا حل تلاش کرنے کیلئے، x+2=0 اور x+3=0 حل کریں۔
\left(x-3\right)\times 2x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
جبکہ زیرو کے ساتھ تقسیم واضح نہیں کی گئی ہے تو متغیرہ x اقدار 3,4 میں سے کسی کے بھی مساوی نہیں ہو سکتا۔ مساوات کی دونوں اطراف کو \left(x-4\right)\left(x-3\right) سے ضرب دیں، x-4,x-3,x^{2}-7x+12 کا سب کم سے کم مشترک حاصل ضرب۔
\left(2x-6\right)x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
x-3 کو ایک سے 2 ضرب دینے کے لیئے منقسم خاصیت کا استعمال کریں۔
2x^{2}-6x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
2x-6 کو ایک سے x ضرب دینے کے لیئے منقسم خاصیت کا استعمال کریں۔
2x^{2}-6x+3x-12+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
x-4 کو ایک سے 3 ضرب دینے کے لیئے منقسم خاصیت کا استعمال کریں۔
2x^{2}-3x-12+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
-3x حاصل کرنے کے لئے -6x اور 3x کو یکجا کریں۔
2x^{2}-3x-12+\left(x^{2}-7x+12\right)\times 4=30+5x^{2}-36x
x-4 کو ایک سے x-3 ضرب دینے کے لیئے منقسم خاصیت کا استعمال کریں اور ایک جیسی اصطلاحات کو یکجا کریں۔
2x^{2}-3x-12+4x^{2}-28x+48=30+5x^{2}-36x
x^{2}-7x+12 کو ایک سے 4 ضرب دینے کے لیئے منقسم خاصیت کا استعمال کریں۔
6x^{2}-3x-12-28x+48=30+5x^{2}-36x
6x^{2} حاصل کرنے کے لئے 2x^{2} اور 4x^{2} کو یکجا کریں۔
6x^{2}-31x-12+48=30+5x^{2}-36x
-31x حاصل کرنے کے لئے -3x اور -28x کو یکجا کریں۔
6x^{2}-31x+36=30+5x^{2}-36x
36 حاصل کرنے کے لئے -12 اور 48 شامل کریں۔
6x^{2}-31x+36-30=5x^{2}-36x
30 کو دونوں طرف سے منہا کریں۔
6x^{2}-31x+6=5x^{2}-36x
6 حاصل کرنے کے لئے 36 کو 30 سے تفریق کریں۔
6x^{2}-31x+6-5x^{2}=-36x
5x^{2} کو دونوں طرف سے منہا کریں۔
x^{2}-31x+6=-36x
x^{2} حاصل کرنے کے لئے 6x^{2} اور -5x^{2} کو یکجا کریں۔
x^{2}-31x+6+36x=0
دونوں اطراف میں 36x شامل کریں۔
x^{2}+5x+6=0
5x حاصل کرنے کے لئے -31x اور 36x کو یکجا کریں۔
a+b=5 ab=1\times 6=6
مساوات حل کرنے کیلئے، گروپنگ کرکے بائیں جانب فیکٹر کریں۔ پہلے، بائیں جانب کو x^{2}+ax+bx+6 بطور دوبارہ لکھنا ہو گا۔ a اور b حاصل کرنے کی غرض سے، حل کرنے کیلئے سسٹم سیٹ کریں۔
1,6 2,3
چونکہ ab مثبت ہے، a اور b کی علامت یکساں ہے۔ چونکہ a+b مثبت ہے، a اور b بھی مثبت ہیں۔ ایسے تمام صحیح اعداد کے جوڑے درج کریں جن کا حاصل 6 ہوتا ہے۔
1+6=7 2+3=5
ہر جوڑے کی رقم کا حساب لگائیں۔
a=2 b=3
حل ایک جوڑا ہے جو میزان 5 دیتا ہے۔
\left(x^{2}+2x\right)+\left(3x+6\right)
x^{2}+5x+6 کو بطور \left(x^{2}+2x\right)+\left(3x+6\right) دوبارہ تحریر کریں۔
x\left(x+2\right)+3\left(x+2\right)
پہلے گروپ میں x اور دوسرے میں 3 اجزائے ضربی میں تقسیم کریں۔
\left(x+2\right)\left(x+3\right)
عام اصطلاح x+2 کا منقسم خاصیت استعمال کرتے ہوئے اجزائے ضربی میں تقسیم کریں۔
x=-2 x=-3
مساوات کا حل تلاش کرنے کیلئے، x+2=0 اور x+3=0 حل کریں۔
\left(x-3\right)\times 2x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
جبکہ زیرو کے ساتھ تقسیم واضح نہیں کی گئی ہے تو متغیرہ x اقدار 3,4 میں سے کسی کے بھی مساوی نہیں ہو سکتا۔ مساوات کی دونوں اطراف کو \left(x-4\right)\left(x-3\right) سے ضرب دیں، x-4,x-3,x^{2}-7x+12 کا سب کم سے کم مشترک حاصل ضرب۔
\left(2x-6\right)x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
x-3 کو ایک سے 2 ضرب دینے کے لیئے منقسم خاصیت کا استعمال کریں۔
2x^{2}-6x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
2x-6 کو ایک سے x ضرب دینے کے لیئے منقسم خاصیت کا استعمال کریں۔
2x^{2}-6x+3x-12+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
x-4 کو ایک سے 3 ضرب دینے کے لیئے منقسم خاصیت کا استعمال کریں۔
2x^{2}-3x-12+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
-3x حاصل کرنے کے لئے -6x اور 3x کو یکجا کریں۔
2x^{2}-3x-12+\left(x^{2}-7x+12\right)\times 4=30+5x^{2}-36x
x-4 کو ایک سے x-3 ضرب دینے کے لیئے منقسم خاصیت کا استعمال کریں اور ایک جیسی اصطلاحات کو یکجا کریں۔
2x^{2}-3x-12+4x^{2}-28x+48=30+5x^{2}-36x
x^{2}-7x+12 کو ایک سے 4 ضرب دینے کے لیئے منقسم خاصیت کا استعمال کریں۔
6x^{2}-3x-12-28x+48=30+5x^{2}-36x
6x^{2} حاصل کرنے کے لئے 2x^{2} اور 4x^{2} کو یکجا کریں۔
6x^{2}-31x-12+48=30+5x^{2}-36x
-31x حاصل کرنے کے لئے -3x اور -28x کو یکجا کریں۔
6x^{2}-31x+36=30+5x^{2}-36x
36 حاصل کرنے کے لئے -12 اور 48 شامل کریں۔
6x^{2}-31x+36-30=5x^{2}-36x
30 کو دونوں طرف سے منہا کریں۔
6x^{2}-31x+6=5x^{2}-36x
6 حاصل کرنے کے لئے 36 کو 30 سے تفریق کریں۔
6x^{2}-31x+6-5x^{2}=-36x
5x^{2} کو دونوں طرف سے منہا کریں۔
x^{2}-31x+6=-36x
x^{2} حاصل کرنے کے لئے 6x^{2} اور -5x^{2} کو یکجا کریں۔
x^{2}-31x+6+36x=0
دونوں اطراف میں 36x شامل کریں۔
x^{2}+5x+6=0
5x حاصل کرنے کے لئے -31x اور 36x کو یکجا کریں۔
x=\frac{-5±\sqrt{5^{2}-4\times 6}}{2}
یہ مساوات معیاری وضع میں ہے: ax^{2}+bx+c=0۔ مربعی فارمولا \frac{-b±\sqrt{b^{2}-4ac}}{2a} میں a کے لئے 1 کو، b کے لئے 5 کو اور c کے لئے 6 کو متبادل کریں۔
x=\frac{-5±\sqrt{25-4\times 6}}{2}
مربع 5۔
x=\frac{-5±\sqrt{25-24}}{2}
-4 کو 6 مرتبہ ضرب دیں۔
x=\frac{-5±\sqrt{1}}{2}
25 کو -24 میں شامل کریں۔
x=\frac{-5±1}{2}
1 کا جذر لیں۔
x=-\frac{4}{2}
جب ± جمع ہو تو اب مساوات x=\frac{-5±1}{2} کو حل کریں۔ -5 کو 1 میں شامل کریں۔
x=-2
-4 کو 2 سے تقسیم کریں۔
x=-\frac{6}{2}
جب ± منفی ہو تو اب مساوات x=\frac{-5±1}{2} کو حل کریں۔ 1 کو -5 میں سے منہا کریں۔
x=-3
-6 کو 2 سے تقسیم کریں۔
x=-2 x=-3
مساوات اب حل ہو گئی ہے۔
\left(x-3\right)\times 2x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
جبکہ زیرو کے ساتھ تقسیم واضح نہیں کی گئی ہے تو متغیرہ x اقدار 3,4 میں سے کسی کے بھی مساوی نہیں ہو سکتا۔ مساوات کی دونوں اطراف کو \left(x-4\right)\left(x-3\right) سے ضرب دیں، x-4,x-3,x^{2}-7x+12 کا سب کم سے کم مشترک حاصل ضرب۔
\left(2x-6\right)x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
x-3 کو ایک سے 2 ضرب دینے کے لیئے منقسم خاصیت کا استعمال کریں۔
2x^{2}-6x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
2x-6 کو ایک سے x ضرب دینے کے لیئے منقسم خاصیت کا استعمال کریں۔
2x^{2}-6x+3x-12+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
x-4 کو ایک سے 3 ضرب دینے کے لیئے منقسم خاصیت کا استعمال کریں۔
2x^{2}-3x-12+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
-3x حاصل کرنے کے لئے -6x اور 3x کو یکجا کریں۔
2x^{2}-3x-12+\left(x^{2}-7x+12\right)\times 4=30+5x^{2}-36x
x-4 کو ایک سے x-3 ضرب دینے کے لیئے منقسم خاصیت کا استعمال کریں اور ایک جیسی اصطلاحات کو یکجا کریں۔
2x^{2}-3x-12+4x^{2}-28x+48=30+5x^{2}-36x
x^{2}-7x+12 کو ایک سے 4 ضرب دینے کے لیئے منقسم خاصیت کا استعمال کریں۔
6x^{2}-3x-12-28x+48=30+5x^{2}-36x
6x^{2} حاصل کرنے کے لئے 2x^{2} اور 4x^{2} کو یکجا کریں۔
6x^{2}-31x-12+48=30+5x^{2}-36x
-31x حاصل کرنے کے لئے -3x اور -28x کو یکجا کریں۔
6x^{2}-31x+36=30+5x^{2}-36x
36 حاصل کرنے کے لئے -12 اور 48 شامل کریں۔
6x^{2}-31x+36-5x^{2}=30-36x
5x^{2} کو دونوں طرف سے منہا کریں۔
x^{2}-31x+36=30-36x
x^{2} حاصل کرنے کے لئے 6x^{2} اور -5x^{2} کو یکجا کریں۔
x^{2}-31x+36+36x=30
دونوں اطراف میں 36x شامل کریں۔
x^{2}+5x+36=30
5x حاصل کرنے کے لئے -31x اور 36x کو یکجا کریں۔
x^{2}+5x=30-36
36 کو دونوں طرف سے منہا کریں۔
x^{2}+5x=-6
-6 حاصل کرنے کے لئے 30 کو 36 سے تفریق کریں۔
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=-6+\left(\frac{5}{2}\right)^{2}
2 سے \frac{5}{2} حاصل کرنے کے لیے، 5 کو x اصطلاح کے کو ایفیشنٹ سے تقسیم کریں۔ پھر \frac{5}{2} کے مربع کو مساوات کی دونوں جانب جمع کریں۔ یہ مرحلہ مساوات کی بائیں ہاتھ کی جانب کو ایک مکمل مربع بناتا ہے۔
x^{2}+5x+\frac{25}{4}=-6+\frac{25}{4}
کسر کا نیومیریٹر اور ڈینومینیٹر دونوں پر مربع لگا کر \frac{5}{2} کو مربع کریں۔
x^{2}+5x+\frac{25}{4}=\frac{1}{4}
-6 کو \frac{25}{4} میں شامل کریں۔
\left(x+\frac{5}{2}\right)^{2}=\frac{1}{4}
فیکٹر x^{2}+5x+\frac{25}{4}۔ عمومی طور پر جب x^{2}+bx+c ایک کامل مربع ہوگا تو اسے ہمیشہ \left(x+\frac{b}{2}\right)^{2} کی طرح فیکٹر کیا جا سکتا ہے۔
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
مساوات کی دونوں اطراف کا جذر لیں۔
x+\frac{5}{2}=\frac{1}{2} x+\frac{5}{2}=-\frac{1}{2}
سادہ کریں۔
x=-2 x=-3
مساوات کے دونوں اطراف سے \frac{5}{2} منہا کریں۔