جائزہ ليں
\frac{5x+12}{x\left(x+4\right)}
w.r.t. x میں فرق کریں
-\frac{5x^{2}+24x+48}{\left(x\left(x+4\right)\right)^{2}}
مخطط
حصہ
کلپ بورڈ پر کاپی کیا گیا
\frac{2x}{x\left(x+4\right)}+\frac{3\left(x+4\right)}{x\left(x+4\right)}
اظہارات شامل یا منہا کرنے کے لئے، ان کے ایک جیسے ڈینومینیٹرز بنانے کے لئے ان میں توسیع کریں۔ x+4 اور x کا سب سے کم مشترک حاصل ضرب x\left(x+4\right) ہے۔ \frac{2}{x+4} کو \frac{x}{x} مرتبہ ضرب دیں۔ \frac{3}{x} کو \frac{x+4}{x+4} مرتبہ ضرب دیں۔
\frac{2x+3\left(x+4\right)}{x\left(x+4\right)}
چونکہ \frac{2x}{x\left(x+4\right)} اور \frac{3\left(x+4\right)}{x\left(x+4\right)} کا نسب نما یکساں ہے، انہیں ان کے شمار کنندگان کے ذریعے شامل کرکے جمع کریں۔
\frac{2x+3x+12}{x\left(x+4\right)}
2x+3\left(x+4\right) میں ضرب دیں۔
\frac{5x+12}{x\left(x+4\right)}
2x+3x+12 میں اصطلاح کی طرح یکجا کریں۔
\frac{5x+12}{x^{2}+4x}
x\left(x+4\right) کو وسیع کریں۔
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x}{x\left(x+4\right)}+\frac{3\left(x+4\right)}{x\left(x+4\right)})
اظہارات شامل یا منہا کرنے کے لئے، ان کے ایک جیسے ڈینومینیٹرز بنانے کے لئے ان میں توسیع کریں۔ x+4 اور x کا سب سے کم مشترک حاصل ضرب x\left(x+4\right) ہے۔ \frac{2}{x+4} کو \frac{x}{x} مرتبہ ضرب دیں۔ \frac{3}{x} کو \frac{x+4}{x+4} مرتبہ ضرب دیں۔
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x+3\left(x+4\right)}{x\left(x+4\right)})
چونکہ \frac{2x}{x\left(x+4\right)} اور \frac{3\left(x+4\right)}{x\left(x+4\right)} کا نسب نما یکساں ہے، انہیں ان کے شمار کنندگان کے ذریعے شامل کرکے جمع کریں۔
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x+3x+12}{x\left(x+4\right)})
2x+3\left(x+4\right) میں ضرب دیں۔
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5x+12}{x\left(x+4\right)})
2x+3x+12 میں اصطلاح کی طرح یکجا کریں۔
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5x+12}{x^{2}+4x})
x کو ایک سے x+4 ضرب دینے کے لیئے منقسم خاصیت کا استعمال کریں۔
\frac{\left(x^{2}+4x^{1}\right)\frac{\mathrm{d}}{\mathrm{d}x}(5x^{1}+12)-\left(5x^{1}+12\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}+4x^{1})}{\left(x^{2}+4x^{1}\right)^{2}}
کسی بھی دو مختلف عوامل کے لیے، دو عوامل کے مخلوط کے مشتق ڈینومینیٹر مرتبہ نومیریٹر کا مشتق نیومیریٹر مرتبہ ڈینومینیٹر کا مشتق ہے، تمام کے تمام مربع کیئے گئے ڈینومیل سے تقسیم کیئے گئے ہیں۔
\frac{\left(x^{2}+4x^{1}\right)\times 5x^{1-1}-\left(5x^{1}+12\right)\left(2x^{2-1}+4x^{1-1}\right)}{\left(x^{2}+4x^{1}\right)^{2}}
کثیر رقمی کا مشتق اس کی اصطلاحات کے مشتق کا کل میزان ہے۔ کسی بھی مستقل اصطلاح کا مشتق 0 ہے۔ ax^{n} کا مشتق nax^{n-1} ہے۔
\frac{\left(x^{2}+4x^{1}\right)\times 5x^{0}-\left(5x^{1}+12\right)\left(2x^{1}+4x^{0}\right)}{\left(x^{2}+4x^{1}\right)^{2}}
سادہ کریں۔
\frac{x^{2}\times 5x^{0}+4x^{1}\times 5x^{0}-\left(5x^{1}+12\right)\left(2x^{1}+4x^{0}\right)}{\left(x^{2}+4x^{1}\right)^{2}}
x^{2}+4x^{1} کو 5x^{0} مرتبہ ضرب دیں۔
\frac{x^{2}\times 5x^{0}+4x^{1}\times 5x^{0}-\left(5x^{1}\times 2x^{1}+5x^{1}\times 4x^{0}+12\times 2x^{1}+12\times 4x^{0}\right)}{\left(x^{2}+4x^{1}\right)^{2}}
5x^{1}+12 کو 2x^{1}+4x^{0} مرتبہ ضرب دیں۔
\frac{5x^{2}+4\times 5x^{1}-\left(5\times 2x^{1+1}+5\times 4x^{1}+12\times 2x^{1}+12\times 4x^{0}\right)}{\left(x^{2}+4x^{1}\right)^{2}}
ایک سی بنیاد کی پاورز کو ضرب دینے کے لیئے، ان کی قوتوں کو شامل کریں۔
\frac{5x^{2}+20x^{1}-\left(10x^{2}+20x^{1}+24x^{1}+48x^{0}\right)}{\left(x^{2}+4x^{1}\right)^{2}}
سادہ کریں۔
\frac{-5x^{2}-24x^{1}-48x^{0}}{\left(x^{2}+4x^{1}\right)^{2}}
ایک جیسی اصطلاحات یکجا کریں۔
\frac{-5x^{2}-24x-48x^{0}}{\left(x^{2}+4x\right)^{2}}
کسی بھی اصطلاح کے لئے t، t^{1}=t۔
\frac{-5x^{2}-24x-48}{\left(x^{2}+4x\right)^{2}}
کسی بھی اصطلاح t کے لئے سوائے 0، t^{0}=1۔
مثالیں
دوطرفہ مساوات
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
لکیری مساوات
y = 3x + 4
حساب
699 * 533
میٹرکس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
بیک وقت مساوات
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمايُز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
انضمام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
حدود
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}