\frac { 1 } { 3 } \cdot 0,1 \cdot ( - \frac { 1 } { 4 } ) \cdot ( - 12 ) =
جائزہ ليں
0,1
عنصر
\frac{1}{2 \cdot 5} = 0.1
حصہ
کلپ بورڈ پر کاپی کیا گیا
\frac{1}{3}\times \frac{1}{10}\left(-\frac{1}{4}\right)\left(-12\right)
اعشاری عدد 0,1 کو کسر \frac{1}{10} میں بدلیں۔
\frac{1\times 1}{3\times 10}\left(-\frac{1}{4}\right)\left(-12\right)
نیومیریٹر کو نیومیریٹر بار اور ڈینومینیٹر کو ڈینومینیٹر بار ضرب دے کر \frac{1}{10} کو \frac{1}{3} مرتبہ ضرب دیں۔
\frac{1}{30}\left(-\frac{1}{4}\right)\left(-12\right)
کسر \frac{1\times 1}{3\times 10} میں ضرب دیں۔
\frac{1\left(-1\right)}{30\times 4}\left(-12\right)
نیومیریٹر کو نیومیریٹر بار اور ڈینومینیٹر کو ڈینومینیٹر بار ضرب دے کر -\frac{1}{4} کو \frac{1}{30} مرتبہ ضرب دیں۔
\frac{-1}{120}\left(-12\right)
کسر \frac{1\left(-1\right)}{30\times 4} میں ضرب دیں۔
-\frac{1}{120}\left(-12\right)
منفی سائن نکال کر کسر \frac{-1}{120} کو بطور -\frac{1}{120} لکھا جاسکتا ہے۔
\frac{-\left(-12\right)}{120}
بطور واحد کسر -\frac{1}{120}\left(-12\right) ایکسپریس
\frac{12}{120}
12 حاصل کرنے کے لئے -1 اور -12 کو ضرب دیں۔
\frac{1}{10}
12 کو اخذ اور منسوخ کرتے ہوئے \frac{12}{120} کسر کو کم تر اصطلاحات تک گھٹائیں۔
مثالیں
دوطرفہ مساوات
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
لکیری مساوات
y = 3x + 4
حساب
699 * 533
میٹرکس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
بیک وقت مساوات
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمايُز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
انضمام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
حدود
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}