x کے لئے حل کریں
x=\frac{\sqrt{6}m\left(3m^{2}+4\right)}{32+36m^{2}-9m^{4}}
m\neq 0\text{ and }|m|\neq \frac{\sqrt{6\sqrt{17}+18}}{3}
مخطط
حصہ
کلپ بورڈ پر کاپی کیا گیا
\frac{1}{2}x\left(2+\frac{16+24m^{2}-9m^{4}}{2\left(3m^{2}+4\right)}\right)\left(6m^{2}+8\right)\times 2=m\left(3m^{2}+4\right)\sqrt{6}
مساوات کی دونوں اطراف کو 2m\left(3m^{2}+4\right) سے ضرب دیں، 2,2\left(3m^{2}+4\right),m کا سب کم سے کم مشترک حاصل ضرب۔
\frac{1}{2}x\left(\frac{2\times 2\left(3m^{2}+4\right)}{2\left(3m^{2}+4\right)}+\frac{16+24m^{2}-9m^{4}}{2\left(3m^{2}+4\right)}\right)\left(6m^{2}+8\right)\times 2=m\left(3m^{2}+4\right)\sqrt{6}
اظہارات شامل یا منہا کرنے کے لئے، ان کے ایک جیسے ڈینومینیٹرز بنانے کے لئے ان میں توسیع کریں۔ 2 کو \frac{2\left(3m^{2}+4\right)}{2\left(3m^{2}+4\right)} مرتبہ ضرب دیں۔
\frac{1}{2}x\times \frac{2\times 2\left(3m^{2}+4\right)+16+24m^{2}-9m^{4}}{2\left(3m^{2}+4\right)}\left(6m^{2}+8\right)\times 2=m\left(3m^{2}+4\right)\sqrt{6}
چونکہ \frac{2\times 2\left(3m^{2}+4\right)}{2\left(3m^{2}+4\right)} اور \frac{16+24m^{2}-9m^{4}}{2\left(3m^{2}+4\right)} کا نسب نما یکساں ہے، انہیں ان کے شمار کنندگان کے ذریعے شامل کرکے جمع کریں۔
\frac{1}{2}x\times \frac{12m^{2}+16+16+24m^{2}-9m^{4}}{2\left(3m^{2}+4\right)}\left(6m^{2}+8\right)\times 2=m\left(3m^{2}+4\right)\sqrt{6}
2\times 2\left(3m^{2}+4\right)+16+24m^{2}-9m^{4} میں ضرب دیں۔
\frac{1}{2}x\times \frac{36m^{2}+32-9m^{4}}{2\left(3m^{2}+4\right)}\left(6m^{2}+8\right)\times 2=m\left(3m^{2}+4\right)\sqrt{6}
12m^{2}+16+16+24m^{2}-9m^{4} میں اصطلاح کی طرح یکجا کریں۔
x\times \frac{36m^{2}+32-9m^{4}}{2\left(3m^{2}+4\right)}\left(6m^{2}+8\right)=m\left(3m^{2}+4\right)\sqrt{6}
1 حاصل کرنے کے لئے \frac{1}{2} اور 2 کو ضرب دیں۔
\frac{x\left(36m^{2}+32-9m^{4}\right)}{2\left(3m^{2}+4\right)}\left(6m^{2}+8\right)=m\left(3m^{2}+4\right)\sqrt{6}
بطور واحد کسر x\times \frac{36m^{2}+32-9m^{4}}{2\left(3m^{2}+4\right)} ایکسپریس
\frac{x\left(36m^{2}+32-9m^{4}\right)\left(6m^{2}+8\right)}{2\left(3m^{2}+4\right)}=m\left(3m^{2}+4\right)\sqrt{6}
بطور واحد کسر \frac{x\left(36m^{2}+32-9m^{4}\right)}{2\left(3m^{2}+4\right)}\left(6m^{2}+8\right) ایکسپریس
\frac{x\left(36m^{2}+32-9m^{4}\right)\left(6m^{2}+8\right)}{2\left(3m^{2}+4\right)}=\left(3m^{3}+4m\right)\sqrt{6}
m کو ایک سے 3m^{2}+4 ضرب دینے کے لیئے منقسم خاصیت کا استعمال کریں۔
\frac{x\left(36m^{2}+32-9m^{4}\right)\left(6m^{2}+8\right)}{2\left(3m^{2}+4\right)}=3m^{3}\sqrt{6}+4m\sqrt{6}
3m^{3}+4m کو ایک سے \sqrt{6} ضرب دینے کے لیئے منقسم خاصیت کا استعمال کریں۔
\frac{-2\times 9x\left(3m^{2}+4\right)\left(m^{2}-\left(-\frac{2}{3}\sqrt{17}+2\right)\right)\left(m^{2}-\left(\frac{2}{3}\sqrt{17}+2\right)\right)}{2\left(3m^{2}+4\right)}=3m^{3}\sqrt{6}+4m\sqrt{6}
اظہارات کو تقسیم کریں جنہیں پہلے \frac{x\left(36m^{2}+32-9m^{4}\right)\left(6m^{2}+8\right)}{2\left(3m^{2}+4\right)} میں تقسیم نہیں کیا گیا۔
-9x\left(m^{2}-\left(-\frac{2}{3}\sqrt{17}+2\right)\right)\left(m^{2}-\left(\frac{2}{3}\sqrt{17}+2\right)\right)=3m^{3}\sqrt{6}+4m\sqrt{6}
نیومیریٹر اور ڈینومینیٹر دونوں میں 2\left(3m^{2}+4\right) کو قلم زد کریں۔
-9xm^{4}+36xm^{2}+32x=3m^{3}\sqrt{6}+4m\sqrt{6}
اظہار میں توسیع کریں۔
\left(-9m^{4}+36m^{2}+32\right)x=3m^{3}\sqrt{6}+4m\sqrt{6}
x پر مشتمل تمام اصطلاحات کو یکجا کریں۔
\left(32+36m^{2}-9m^{4}\right)x=3\sqrt{6}m^{3}+4\sqrt{6}m
مساوات معیاری وضع میں ہے۔
\frac{\left(32+36m^{2}-9m^{4}\right)x}{32+36m^{2}-9m^{4}}=\frac{\sqrt{6}m\left(3m^{2}+4\right)}{32+36m^{2}-9m^{4}}
36m^{2}+32-9m^{4} سے دونوں اطراف کو تقسیم کریں۔
x=\frac{\sqrt{6}m\left(3m^{2}+4\right)}{32+36m^{2}-9m^{4}}
36m^{2}+32-9m^{4} سے تقسیم کرنا 36m^{2}+32-9m^{4} سے ضرب کو کالعدم کرتا ہے۔
مثالیں
دوطرفہ مساوات
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
لکیری مساوات
y = 3x + 4
حساب
699 * 533
میٹرکس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
بیک وقت مساوات
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمايُز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
انضمام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
حدود
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}