اہم مواد پر چھوڑ دیں
x کے لئے حل کریں
Tick mark Image
مخطط

ویب سرچ سے اسی طرح کے مسائل

حصہ

-x^{2}+2x+8=0
جبکہ زیرو کے ساتھ تقسیم واضح نہیں کی گئی ہے تو متغیرہ x -6 کے مساوی نہیں ہو سکتا۔ \left(x+6\right)^{2}\left(x^{2}+2\right) سے مساوات کی دونوں اطراف کو ضرب دیں۔
a+b=2 ab=-8=-8
مساوات حل کرنے کیلئے، گروپنگ کرکے بائیں جانب فیکٹر کریں۔ پہلے، بائیں جانب کو -x^{2}+ax+bx+8 بطور دوبارہ لکھنا ہو گا۔ a اور b حاصل کرنے کی غرض سے، حل کرنے کیلئے سسٹم سیٹ کریں۔
-1,8 -2,4
چونکہ ab منفی ہے، a اور b کی علامت مخالف ہیں۔ چونکہ a+b مثبت ہے، مثبت عدد میں منفی سے زیادہ مطلق قدر ہے۔ ایسے تمام صحیح اعداد کے جوڑے درج کریں جن کا حاصل -8 ہوتا ہے۔
-1+8=7 -2+4=2
ہر جوڑے کی رقم کا حساب لگائیں۔
a=4 b=-2
حل ایک جوڑا ہے جو میزان 2 دیتا ہے۔
\left(-x^{2}+4x\right)+\left(-2x+8\right)
-x^{2}+2x+8 کو بطور \left(-x^{2}+4x\right)+\left(-2x+8\right) دوبارہ تحریر کریں۔
-x\left(x-4\right)-2\left(x-4\right)
پہلے گروپ میں -x اور دوسرے میں -2 اجزائے ضربی میں تقسیم کریں۔
\left(x-4\right)\left(-x-2\right)
عام اصطلاح x-4 کا منقسم خاصیت استعمال کرتے ہوئے اجزائے ضربی میں تقسیم کریں۔
x=4 x=-2
مساوات کا حل تلاش کرنے کیلئے، x-4=0 اور -x-2=0 حل کریں۔
-x^{2}+2x+8=0
جبکہ زیرو کے ساتھ تقسیم واضح نہیں کی گئی ہے تو متغیرہ x -6 کے مساوی نہیں ہو سکتا۔ \left(x+6\right)^{2}\left(x^{2}+2\right) سے مساوات کی دونوں اطراف کو ضرب دیں۔
x=\frac{-2±\sqrt{2^{2}-4\left(-1\right)\times 8}}{2\left(-1\right)}
یہ مساوات معیاری وضع میں ہے: ax^{2}+bx+c=0۔ مربعی فارمولا \frac{-b±\sqrt{b^{2}-4ac}}{2a} میں a کے لئے -1 کو، b کے لئے 2 کو اور c کے لئے 8 کو متبادل کریں۔
x=\frac{-2±\sqrt{4-4\left(-1\right)\times 8}}{2\left(-1\right)}
مربع 2۔
x=\frac{-2±\sqrt{4+4\times 8}}{2\left(-1\right)}
-4 کو -1 مرتبہ ضرب دیں۔
x=\frac{-2±\sqrt{4+32}}{2\left(-1\right)}
4 کو 8 مرتبہ ضرب دیں۔
x=\frac{-2±\sqrt{36}}{2\left(-1\right)}
4 کو 32 میں شامل کریں۔
x=\frac{-2±6}{2\left(-1\right)}
36 کا جذر لیں۔
x=\frac{-2±6}{-2}
2 کو -1 مرتبہ ضرب دیں۔
x=\frac{4}{-2}
جب ± جمع ہو تو اب مساوات x=\frac{-2±6}{-2} کو حل کریں۔ -2 کو 6 میں شامل کریں۔
x=-2
4 کو -2 سے تقسیم کریں۔
x=-\frac{8}{-2}
جب ± منفی ہو تو اب مساوات x=\frac{-2±6}{-2} کو حل کریں۔ 6 کو -2 میں سے منہا کریں۔
x=4
-8 کو -2 سے تقسیم کریں۔
x=-2 x=4
مساوات اب حل ہو گئی ہے۔
-x^{2}+2x+8=0
جبکہ زیرو کے ساتھ تقسیم واضح نہیں کی گئی ہے تو متغیرہ x -6 کے مساوی نہیں ہو سکتا۔ \left(x+6\right)^{2}\left(x^{2}+2\right) سے مساوات کی دونوں اطراف کو ضرب دیں۔
-x^{2}+2x=-8
8 کو دونوں طرف سے منہا کریں۔ کوئی بھی چیز صفر میں سے تفریق ہوکر اپنا نفی دیتی ہے۔
\frac{-x^{2}+2x}{-1}=-\frac{8}{-1}
-1 سے دونوں اطراف کو تقسیم کریں۔
x^{2}+\frac{2}{-1}x=-\frac{8}{-1}
-1 سے تقسیم کرنا -1 سے ضرب کو کالعدم کرتا ہے۔
x^{2}-2x=-\frac{8}{-1}
2 کو -1 سے تقسیم کریں۔
x^{2}-2x=8
-8 کو -1 سے تقسیم کریں۔
x^{2}-2x+1=8+1
2 سے -1 حاصل کرنے کے لیے، -2 کو x اصطلاح کے کو ایفیشنٹ سے تقسیم کریں۔ پھر -1 کے مربع کو مساوات کی دونوں جانب جمع کریں۔ یہ مرحلہ مساوات کی بائیں ہاتھ کی جانب کو ایک مکمل مربع بناتا ہے۔
x^{2}-2x+1=9
8 کو 1 میں شامل کریں۔
\left(x-1\right)^{2}=9
فیکٹر x^{2}-2x+1۔ عمومی طور پر جب x^{2}+bx+c ایک کامل مربع ہوگا تو اسے ہمیشہ \left(x+\frac{b}{2}\right)^{2} کی طرح فیکٹر کیا جا سکتا ہے۔
\sqrt{\left(x-1\right)^{2}}=\sqrt{9}
مساوات کی دونوں اطراف کا جذر لیں۔
x-1=3 x-1=-3
سادہ کریں۔
x=4 x=-2
مساوات کے دونوں اطراف سے 1 کو شامل کریں۔