Перейти до основного контенту
Знайдіть a
Tick mark Image

Схожі проблеми з веб-пошуком

Ділити

a^{2}-a-1=0
Усі рівняння форми ax^{2}+bx+c=0 можна розв’язати за формулою коренів квадратного рівняння: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ця формула дає два розв’язки: перший відповідає знаку додавання в ±, а другий знаку віднімання.
a=\frac{-\left(-1\right)±\sqrt{1-4\left(-1\right)}}{2}
Це рівняння записано в стандартному вигляді: ax^{2}+bx+c=0. Підставте 1 замість a, -1 замість b і -1 замість c у формулі для коренів квадратного рівняння \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-1\right)±\sqrt{1+4}}{2}
Помножте -4 на -1.
a=\frac{-\left(-1\right)±\sqrt{5}}{2}
Додайте 1 до 4.
a=\frac{1±\sqrt{5}}{2}
Число, протилежне до -1, дорівнює 1.
a=\frac{\sqrt{5}+1}{2}
Тепер розв’яжіть рівняння a=\frac{1±\sqrt{5}}{2} за додатного значення ±. Додайте 1 до \sqrt{5}.
a=\frac{1-\sqrt{5}}{2}
Тепер розв’яжіть рівняння a=\frac{1±\sqrt{5}}{2} за від’ємного значення ±. Відніміть \sqrt{5} від 1.
a=\frac{\sqrt{5}+1}{2} a=\frac{1-\sqrt{5}}{2}
Тепер рівняння розв’язано.
a^{2}-a-1=0
Квадратні рівняння такого вигляду можна розв’язати, доповнивши їх до повного квадрата. Для цього спочатку слід привести таке рівняння до вигляду x^{2}+bx=c.
a^{2}-a-1-\left(-1\right)=-\left(-1\right)
Додайте 1 до обох сторін цього рівняння.
a^{2}-a=-\left(-1\right)
Якщо відняти -1 від самого себе, залишиться 0.
a^{2}-a=1
Відніміть -1 від 0.
a^{2}-a+\left(-\frac{1}{2}\right)^{2}=1+\left(-\frac{1}{2}\right)^{2}
Поділіть -1 (коефіцієнт члена x) на 2, щоб отримати -\frac{1}{2}. Потім додайте -\frac{1}{2} у квадраті до обох сторін цього рівняння. Тоді в лівій частині рівняння буде квадратне число.
a^{2}-a+\frac{1}{4}=1+\frac{1}{4}
Щоб піднести -\frac{1}{2} до квадрата, піднесіть до квадрата чисельник і знаменник дробу.
a^{2}-a+\frac{1}{4}=\frac{5}{4}
Додайте 1 до \frac{1}{4}.
\left(a-\frac{1}{2}\right)^{2}=\frac{5}{4}
Розкладіть a^{2}-a+\frac{1}{4} на множник. Зазвичай, якщо x^{2}+bx+c – це ідеальний квадрат, його завжди можна розкласти на множник як \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-\frac{1}{2}\right)^{2}}=\sqrt{\frac{5}{4}}
Видобудьте квадратний корінь з обох сторін рівняння.
a-\frac{1}{2}=\frac{\sqrt{5}}{2} a-\frac{1}{2}=-\frac{\sqrt{5}}{2}
Виконайте спрощення.
a=\frac{\sqrt{5}+1}{2} a=\frac{1-\sqrt{5}}{2}
Додайте \frac{1}{2} до обох сторін цього рівняння.