Перейти до основного контенту
Розкласти на множники
Tick mark Image
Обчислити
Tick mark Image
Графік

Схожі проблеми з веб-пошуком

Ділити

2\left(9x^{2}+5x\right)
Винесіть 2 за дужки.
x\left(9x+5\right)
Розглянемо 9x^{2}+5x. Винесіть x за дужки.
2x\left(9x+5\right)
Переписати повністю розкладений на множники вираз.
18x^{2}+10x=0
Квадратний многочлен можна розкласти на співмножники за допомогою перетворення ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), де x_{1} і x_{2} – розв’язки квадратного рівняння ax^{2}+bx+c=0.
x=\frac{-10±\sqrt{10^{2}}}{2\times 18}
Усі рівняння форми ax^{2}+bx+c=0 можна розв’язати за формулою коренів квадратного рівняння: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ця формула дає два розв’язки: перший відповідає знаку додавання в ±, а другий знаку віднімання.
x=\frac{-10±10}{2\times 18}
Видобудьте квадратний корінь із 10^{2}.
x=\frac{-10±10}{36}
Помножте 2 на 18.
x=\frac{0}{36}
Тепер розв’яжіть рівняння x=\frac{-10±10}{36} за додатного значення ±. Додайте -10 до 10.
x=0
Розділіть 0 на 36.
x=-\frac{20}{36}
Тепер розв’яжіть рівняння x=\frac{-10±10}{36} за від’ємного значення ±. Відніміть 10 від -10.
x=-\frac{5}{9}
Поділіть чисельник і знаменник на 4, щоб звести дріб \frac{-20}{36} до нескоротного вигляду.
18x^{2}+10x=18x\left(x-\left(-\frac{5}{9}\right)\right)
Розкладіть вихідний вираз на множники за принципом ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Замініть 0 на x_{1} та -\frac{5}{9} на x_{2}.
18x^{2}+10x=18x\left(x+\frac{5}{9}\right)
Спростіть усі вирази виду p-\left(-q\right) до виразів виду p+q.
18x^{2}+10x=18x\times \frac{9x+5}{9}
Щоб додати \frac{5}{9} до x, визначте спільний знаменник і підсумуйте чисельники. Далі по змозі зведіть дріб до нескоротного вигляду.
18x^{2}+10x=2x\left(9x+5\right)
Відкиньте 9, тобто найбільший спільний дільник для 18 й 9.