Перейти до основного контенту
Розкласти на множники
Tick mark Image
Обчислити
Tick mark Image

Схожі проблеми з веб-пошуком

Ділити

3\left(-16w^{2}+8w+35\right)
Винесіть 3 за дужки.
a+b=8 ab=-16\times 35=-560
Розглянемо -16w^{2}+8w+35. Розкладіть вираз на множники методом групування. Спочатку вираз потрібно переписати у вигляді -16w^{2}+aw+bw+35. Щоб знайти a та b, настройте систему для вирішено.
-1,560 -2,280 -4,140 -5,112 -7,80 -8,70 -10,56 -14,40 -16,35 -20,28
Оскільки ab від'ємне, a і b протилежному знаки. Оскільки значення a+b додатне, додатне число за модулем більше за від’ємне. Наведіть усі пари цілих чисел, добуток яких дорівнює -560.
-1+560=559 -2+280=278 -4+140=136 -5+112=107 -7+80=73 -8+70=62 -10+56=46 -14+40=26 -16+35=19 -20+28=8
Обчисліть суму для кожної пари.
a=28 b=-20
Розв’язком буде пара, що в сумі дорівнює 8.
\left(-16w^{2}+28w\right)+\left(-20w+35\right)
Перепишіть -16w^{2}+8w+35 як \left(-16w^{2}+28w\right)+\left(-20w+35\right).
-4w\left(4w-7\right)-5\left(4w-7\right)
-4w на першій та -5 в друге групу.
\left(4w-7\right)\left(-4w-5\right)
Винесіть за дужки спільний член 4w-7, використовуючи властивість дистрибутивності.
3\left(4w-7\right)\left(-4w-5\right)
Переписати повністю розкладений на множники вираз.
-48w^{2}+24w+105=0
Квадратний многочлен можна розкласти на співмножники за допомогою перетворення ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), де x_{1} і x_{2} – розв’язки квадратного рівняння ax^{2}+bx+c=0.
w=\frac{-24±\sqrt{24^{2}-4\left(-48\right)\times 105}}{2\left(-48\right)}
Усі рівняння форми ax^{2}+bx+c=0 можна розв’язати за формулою коренів квадратного рівняння: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ця формула дає два розв’язки: перший відповідає знаку додавання в ±, а другий знаку віднімання.
w=\frac{-24±\sqrt{576-4\left(-48\right)\times 105}}{2\left(-48\right)}
Піднесіть 24 до квадрата.
w=\frac{-24±\sqrt{576+192\times 105}}{2\left(-48\right)}
Помножте -4 на -48.
w=\frac{-24±\sqrt{576+20160}}{2\left(-48\right)}
Помножте 192 на 105.
w=\frac{-24±\sqrt{20736}}{2\left(-48\right)}
Додайте 576 до 20160.
w=\frac{-24±144}{2\left(-48\right)}
Видобудьте квадратний корінь із 20736.
w=\frac{-24±144}{-96}
Помножте 2 на -48.
w=\frac{120}{-96}
Тепер розв’яжіть рівняння w=\frac{-24±144}{-96} за додатного значення ±. Додайте -24 до 144.
w=-\frac{5}{4}
Поділіть чисельник і знаменник на 24, щоб звести дріб \frac{120}{-96} до нескоротного вигляду.
w=-\frac{168}{-96}
Тепер розв’яжіть рівняння w=\frac{-24±144}{-96} за від’ємного значення ±. Відніміть 144 від -24.
w=\frac{7}{4}
Поділіть чисельник і знаменник на 24, щоб звести дріб \frac{-168}{-96} до нескоротного вигляду.
-48w^{2}+24w+105=-48\left(w-\left(-\frac{5}{4}\right)\right)\left(w-\frac{7}{4}\right)
Розкладіть вихідний вираз на множники за принципом ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Замініть -\frac{5}{4} на x_{1} та \frac{7}{4} на x_{2}.
-48w^{2}+24w+105=-48\left(w+\frac{5}{4}\right)\left(w-\frac{7}{4}\right)
Спростіть усі вирази виду p-\left(-q\right) до виразів виду p+q.
-48w^{2}+24w+105=-48\times \frac{-4w-5}{-4}\left(w-\frac{7}{4}\right)
Щоб додати \frac{5}{4} до w, визначте спільний знаменник і підсумуйте чисельники. Далі по змозі зведіть дріб до нескоротного вигляду.
-48w^{2}+24w+105=-48\times \frac{-4w-5}{-4}\times \frac{-4w+7}{-4}
Щоб відняти w від \frac{7}{4}, визначте спільний знаменник і обчисліть різницю чисельників. Далі по змозі зведіть дріб до нескоротного вигляду.
-48w^{2}+24w+105=-48\times \frac{\left(-4w-5\right)\left(-4w+7\right)}{-4\left(-4\right)}
Щоб помножити \frac{-4w-5}{-4} на \frac{-4w+7}{-4}, помножте чисельник на чисельник і знаменник на знаменник. Далі по змозі зведіть дріб до нескоротного вигляду.
-48w^{2}+24w+105=-48\times \frac{\left(-4w-5\right)\left(-4w+7\right)}{16}
Помножте -4 на -4.
-48w^{2}+24w+105=-3\left(-4w-5\right)\left(-4w+7\right)
Відкиньте 16, тобто найбільший спільний дільник для -48 й 16.