Перейти до основного контенту
Знайдіть x
Tick mark Image
Графік

Схожі проблеми з веб-пошуком

Ділити

x^{2}+x-200=0
Усі рівняння форми ax^{2}+bx+c=0 можна розв’язати за формулою коренів квадратного рівняння: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ця формула дає два розв’язки: перший відповідає знаку додавання в ±, а другий знаку віднімання.
x=\frac{-1±\sqrt{1^{2}-4\left(-200\right)}}{2}
Це рівняння записано в стандартному вигляді: ax^{2}+bx+c=0. Підставте 1 замість a, 1 замість b і -200 замість c у формулі для коренів квадратного рівняння \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-200\right)}}{2}
Піднесіть 1 до квадрата.
x=\frac{-1±\sqrt{1+800}}{2}
Помножте -4 на -200.
x=\frac{-1±\sqrt{801}}{2}
Додайте 1 до 800.
x=\frac{-1±3\sqrt{89}}{2}
Видобудьте квадратний корінь із 801.
x=\frac{3\sqrt{89}-1}{2}
Тепер розв’яжіть рівняння x=\frac{-1±3\sqrt{89}}{2} за додатного значення ±. Додайте -1 до 3\sqrt{89}.
x=\frac{-3\sqrt{89}-1}{2}
Тепер розв’яжіть рівняння x=\frac{-1±3\sqrt{89}}{2} за від’ємного значення ±. Відніміть 3\sqrt{89} від -1.
x=\frac{3\sqrt{89}-1}{2} x=\frac{-3\sqrt{89}-1}{2}
Тепер рівняння розв’язано.
x^{2}+x-200=0
Квадратні рівняння такого вигляду можна розв’язати, доповнивши їх до повного квадрата. Для цього спочатку слід привести таке рівняння до вигляду x^{2}+bx=c.
x^{2}+x-200-\left(-200\right)=-\left(-200\right)
Додайте 200 до обох сторін цього рівняння.
x^{2}+x=-\left(-200\right)
Якщо відняти -200 від самого себе, залишиться 0.
x^{2}+x=200
Відніміть -200 від 0.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=200+\left(\frac{1}{2}\right)^{2}
Поділіть 1 (коефіцієнт члена x) на 2, щоб отримати \frac{1}{2}. Потім додайте \frac{1}{2} у квадраті до обох сторін цього рівняння. Тоді в лівій частині рівняння буде квадратне число.
x^{2}+x+\frac{1}{4}=200+\frac{1}{4}
Щоб піднести \frac{1}{2} до квадрата, піднесіть до квадрата чисельник і знаменник дробу.
x^{2}+x+\frac{1}{4}=\frac{801}{4}
Додайте 200 до \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=\frac{801}{4}
Розкладіть x^{2}+x+\frac{1}{4} на множник. Зазвичай, якщо x^{2}+bx+c – це ідеальний квадрат, його завжди можна розкласти на множник як \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{801}{4}}
Видобудьте квадратний корінь з обох сторін рівняння.
x+\frac{1}{2}=\frac{3\sqrt{89}}{2} x+\frac{1}{2}=-\frac{3\sqrt{89}}{2}
Виконайте спрощення.
x=\frac{3\sqrt{89}-1}{2} x=\frac{-3\sqrt{89}-1}{2}
Відніміть \frac{1}{2} від обох сторін цього рівняння.