Перейти до основного контенту
Обчислити
Tick mark Image
Диференціювати за x
Tick mark Image

Схожі проблеми з веб-пошуком

Ділити

\int x^{4}\mathrm{d}x+\int 2x^{3}\mathrm{d}x+\int -9x^{2}\mathrm{d}x+\int x\mathrm{d}x
Інтегруйте суму почленно.
\int x^{4}\mathrm{d}x+2\int x^{3}\mathrm{d}x-9\int x^{2}\mathrm{d}x+\int x\mathrm{d}x
Винесіть константу за дужки в кожному зі членів.
\frac{x^{5}}{5}+2\int x^{3}\mathrm{d}x-9\int x^{2}\mathrm{d}x+\int x\mathrm{d}x
Оскільки \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, замініть \int x^{4}\mathrm{d}x з \frac{x^{5}}{5}.
\frac{x^{5}}{5}+\frac{x^{4}}{2}-9\int x^{2}\mathrm{d}x+\int x\mathrm{d}x
Оскільки \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, замініть \int x^{3}\mathrm{d}x з \frac{x^{4}}{4}. Помножте 2 на \frac{x^{4}}{4}.
\frac{x^{5}}{5}+\frac{x^{4}}{2}-3x^{3}+\int x\mathrm{d}x
Оскільки \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, замініть \int x^{2}\mathrm{d}x з \frac{x^{3}}{3}. Помножте -9 на \frac{x^{3}}{3}.
\frac{x^{5}}{5}+\frac{x^{4}}{2}-3x^{3}+\frac{x^{2}}{2}
Оскільки \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, замініть \int x\mathrm{d}x з \frac{x^{2}}{2}.
\frac{x^{5}}{5}+\frac{x^{4}}{2}-3x^{3}+\frac{x^{2}}{2}+С
Якщо F\left(x\right) – це первісна f\left(x\right), а набір всіх antiderivatives f\left(x\right) надано F\left(x\right)+C. А потім додайте константи C\in \mathrm{R} інтеграції до результату.