Перейти до основного контенту
Обчислити
Tick mark Image

Схожі проблеми з веб-пошуком

Ділити

\int 2x^{2}-5x+3\mathrm{d}x
Спочатку обчисліть невизначений інтеграл.
\int 2x^{2}\mathrm{d}x+\int -5x\mathrm{d}x+\int 3\mathrm{d}x
Інтегруйте суму почленно.
2\int x^{2}\mathrm{d}x-5\int x\mathrm{d}x+\int 3\mathrm{d}x
Винесіть константу за дужки в кожному зі членів.
\frac{2x^{3}}{3}-5\int x\mathrm{d}x+\int 3\mathrm{d}x
Оскільки \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, замініть \int x^{2}\mathrm{d}x з \frac{x^{3}}{3}. Помножте 2 на \frac{x^{3}}{3}.
\frac{2x^{3}}{3}-\frac{5x^{2}}{2}+\int 3\mathrm{d}x
Оскільки \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, замініть \int x\mathrm{d}x з \frac{x^{2}}{2}. Помножте -5 на \frac{x^{2}}{2}.
\frac{2x^{3}}{3}-\frac{5x^{2}}{2}+3x
Знайдіть Інтеграл 3 за допомогою таблиці загального інтеграли правила \int a\mathrm{d}x=ax.
\frac{2}{3}\times 15^{3}-\frac{5}{2}\times 15^{2}+3\times 15-\left(\frac{2}{3}\times 1^{3}-\frac{5}{2}\times 1^{2}+3\times 1\right)
Визначений інтеграл дорівнює різниці значень первісної виразу, обчисленої для верхньої та нижньої меж інтегрування.
\frac{5194}{3}
Виконайте спрощення.