Перейти до основного контенту
Обчислити
Tick mark Image
Диференціювати за x
Tick mark Image

Схожі проблеми з веб-пошуком

Ділити

\int \left(x+1\right)^{2}\left(2x+2\right)\mathrm{d}x
Помножте x+1 на x+1, щоб отримати \left(x+1\right)^{2}.
\int \left(x^{2}+2x+1\right)\left(2x+2\right)\mathrm{d}x
Скористайтеся біномом Ньютона \left(a+b\right)^{2}=a^{2}+2ab+b^{2}, щоб розкрити дужки в \left(x+1\right)^{2}.
\int 2x^{3}+2x^{2}+4x^{2}+4x+2x+2\mathrm{d}x
Скористайтеся властивістю дистрибутивності: помножте кожен член x^{2}+2x+1 на кожен член 2x+2.
\int 2x^{3}+6x^{2}+4x+2x+2\mathrm{d}x
Додайте 2x^{2} до 4x^{2}, щоб отримати 6x^{2}.
\int 2x^{3}+6x^{2}+6x+2\mathrm{d}x
Додайте 4x до 2x, щоб отримати 6x.
\int 2x^{3}\mathrm{d}x+\int 6x^{2}\mathrm{d}x+\int 6x\mathrm{d}x+\int 2\mathrm{d}x
Інтегруйте суму почленно.
2\int x^{3}\mathrm{d}x+6\int x^{2}\mathrm{d}x+6\int x\mathrm{d}x+\int 2\mathrm{d}x
Винесіть константу за дужки в кожному зі членів.
\frac{x^{4}}{2}+6\int x^{2}\mathrm{d}x+6\int x\mathrm{d}x+\int 2\mathrm{d}x
Оскільки \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, замініть \int x^{3}\mathrm{d}x з \frac{x^{4}}{4}. Помножте 2 на \frac{x^{4}}{4}.
\frac{x^{4}}{2}+2x^{3}+6\int x\mathrm{d}x+\int 2\mathrm{d}x
Оскільки \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, замініть \int x^{2}\mathrm{d}x з \frac{x^{3}}{3}. Помножте 6 на \frac{x^{3}}{3}.
\frac{x^{4}}{2}+2x^{3}+3x^{2}+\int 2\mathrm{d}x
Оскільки \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, замініть \int x\mathrm{d}x з \frac{x^{2}}{2}. Помножте 6 на \frac{x^{2}}{2}.
\frac{x^{4}}{2}+2x^{3}+3x^{2}+2x
Знайдіть Інтеграл 2 за допомогою таблиці загального інтеграли правила \int a\mathrm{d}x=ax.
3x^{2}+2x^{3}+\frac{x^{4}}{2}+2x+С
Якщо F\left(x\right) – це первісна f\left(x\right), а набір всіх antiderivatives f\left(x\right) надано F\left(x\right)+C. А потім додайте константи C\in \mathrm{R} інтеграції до результату.