Перейти до основного контенту
Знайдіть y (complex solution)
Tick mark Image
Знайдіть y
Tick mark Image
Знайдіть x (complex solution)
Tick mark Image
Знайдіть x
Tick mark Image
Графік

Схожі проблеми з веб-пошуком

Ділити

xy\times 3x+5y\times 4-5x\times 2x=10xy
Змінна y не може дорівнювати 0, тому що ділення на нуль не визначено. Помножте обидві сторони цього рівняння на 5xy (найменше спільне кратне для 5,x,y).
x^{2}y\times 3+5y\times 4-5x\times 2x=10xy
Помножте x на x, щоб отримати x^{2}.
x^{2}y\times 3+20y-5x\times 2x=10xy
Помножте 5 на 4, щоб отримати 20.
x^{2}y\times 3+20y-5x^{2}\times 2=10xy
Помножте x на x, щоб отримати x^{2}.
x^{2}y\times 3+20y-10x^{2}=10xy
Помножте 5 на 2, щоб отримати 10.
x^{2}y\times 3+20y-10x^{2}-10xy=0
Відніміть 10xy з обох сторін.
x^{2}y\times 3+20y-10xy=10x^{2}
Додайте 10x^{2} до обох сторін. Якщо додати нуль до будь-якого числа, воно не зміниться.
\left(x^{2}\times 3+20-10x\right)y=10x^{2}
Зведіть усі члени, що містять y.
\left(3x^{2}-10x+20\right)y=10x^{2}
Рівняння має стандартну форму.
\frac{\left(3x^{2}-10x+20\right)y}{3x^{2}-10x+20}=\frac{10x^{2}}{3x^{2}-10x+20}
Розділіть обидві сторони на 3x^{2}-10x+20.
y=\frac{10x^{2}}{3x^{2}-10x+20}
Ділення на 3x^{2}-10x+20 скасовує множення на 3x^{2}-10x+20.
y=\frac{10x^{2}}{3x^{2}-10x+20}\text{, }y\neq 0
Змінна y не може дорівнювати 0.
xy\times 3x+5y\times 4-5x\times 2x=10xy
Змінна y не може дорівнювати 0, тому що ділення на нуль не визначено. Помножте обидві сторони цього рівняння на 5xy (найменше спільне кратне для 5,x,y).
x^{2}y\times 3+5y\times 4-5x\times 2x=10xy
Помножте x на x, щоб отримати x^{2}.
x^{2}y\times 3+20y-5x\times 2x=10xy
Помножте 5 на 4, щоб отримати 20.
x^{2}y\times 3+20y-5x^{2}\times 2=10xy
Помножте x на x, щоб отримати x^{2}.
x^{2}y\times 3+20y-10x^{2}=10xy
Помножте 5 на 2, щоб отримати 10.
x^{2}y\times 3+20y-10x^{2}-10xy=0
Відніміть 10xy з обох сторін.
x^{2}y\times 3+20y-10xy=10x^{2}
Додайте 10x^{2} до обох сторін. Якщо додати нуль до будь-якого числа, воно не зміниться.
\left(x^{2}\times 3+20-10x\right)y=10x^{2}
Зведіть усі члени, що містять y.
\left(3x^{2}-10x+20\right)y=10x^{2}
Рівняння має стандартну форму.
\frac{\left(3x^{2}-10x+20\right)y}{3x^{2}-10x+20}=\frac{10x^{2}}{3x^{2}-10x+20}
Розділіть обидві сторони на 3x^{2}-10x+20.
y=\frac{10x^{2}}{3x^{2}-10x+20}
Ділення на 3x^{2}-10x+20 скасовує множення на 3x^{2}-10x+20.
y=\frac{10x^{2}}{3x^{2}-10x+20}\text{, }y\neq 0
Змінна y не може дорівнювати 0.