Знайдіть x (complex solution)
x\in \mathrm{C}\setminus -1,0
Знайдіть x
x\in \mathrm{R}\setminus -1,0
Графік
Вікторина
Polynomial
\frac { 3 + 4 x } { x ^ { 2 } + x } - 1 = \frac { 3 } { x } - \frac { x } { x + 1 }
Ділити
Скопійовано в буфер обміну
3+4x+x\left(x+1\right)\left(-1\right)=\left(x+1\right)\times 3-xx
Змінна x не може дорівнювати жодному зі значень -1,0, тому що ділення на нуль не визначено. Помножте обидві сторони цього рівняння на x\left(x+1\right) (найменше спільне кратне для x^{2}+x,x,x+1).
3+4x+x\left(x+1\right)\left(-1\right)=\left(x+1\right)\times 3-x^{2}
Помножте x на x, щоб отримати x^{2}.
3+4x+\left(x^{2}+x\right)\left(-1\right)=\left(x+1\right)\times 3-x^{2}
Скористайтеся властивістю дистрибутивності, щоб помножити x на x+1.
3+4x-x^{2}-x=\left(x+1\right)\times 3-x^{2}
Скористайтеся властивістю дистрибутивності, щоб помножити x^{2}+x на -1.
3+3x-x^{2}=\left(x+1\right)\times 3-x^{2}
Додайте 4x до -x, щоб отримати 3x.
3+3x-x^{2}=3x+3-x^{2}
Скористайтеся властивістю дистрибутивності, щоб помножити x+1 на 3.
3+3x-x^{2}-3x=3-x^{2}
Відніміть 3x з обох сторін.
3-x^{2}=3-x^{2}
Додайте 3x до -3x, щоб отримати 0.
3-x^{2}-3=-x^{2}
Відніміть 3 з обох сторін.
-x^{2}=-x^{2}
Відніміть 3 від 3, щоб отримати 0.
-x^{2}+x^{2}=0
Додайте x^{2} до обох сторін.
0=0
Додайте -x^{2} до x^{2}, щоб отримати 0.
\text{true}
Порівняння 0 та 0.
x\in \mathrm{C}
Це виконується для будь-якого значення x.
x\in \mathrm{C}\setminus -1,0
Змінна x не може дорівнювати жодному зі значень -1,0.
3+4x+x\left(x+1\right)\left(-1\right)=\left(x+1\right)\times 3-xx
Змінна x не може дорівнювати жодному зі значень -1,0, тому що ділення на нуль не визначено. Помножте обидві сторони цього рівняння на x\left(x+1\right) (найменше спільне кратне для x^{2}+x,x,x+1).
3+4x+x\left(x+1\right)\left(-1\right)=\left(x+1\right)\times 3-x^{2}
Помножте x на x, щоб отримати x^{2}.
3+4x+\left(x^{2}+x\right)\left(-1\right)=\left(x+1\right)\times 3-x^{2}
Скористайтеся властивістю дистрибутивності, щоб помножити x на x+1.
3+4x-x^{2}-x=\left(x+1\right)\times 3-x^{2}
Скористайтеся властивістю дистрибутивності, щоб помножити x^{2}+x на -1.
3+3x-x^{2}=\left(x+1\right)\times 3-x^{2}
Додайте 4x до -x, щоб отримати 3x.
3+3x-x^{2}=3x+3-x^{2}
Скористайтеся властивістю дистрибутивності, щоб помножити x+1 на 3.
3+3x-x^{2}-3x=3-x^{2}
Відніміть 3x з обох сторін.
3-x^{2}=3-x^{2}
Додайте 3x до -3x, щоб отримати 0.
3-x^{2}-3=-x^{2}
Відніміть 3 з обох сторін.
-x^{2}=-x^{2}
Відніміть 3 від 3, щоб отримати 0.
-x^{2}+x^{2}=0
Додайте x^{2} до обох сторін.
0=0
Додайте -x^{2} до x^{2}, щоб отримати 0.
\text{true}
Порівняння 0 та 0.
x\in \mathrm{R}
Це виконується для будь-якого значення x.
x\in \mathrm{R}\setminus -1,0
Змінна x не може дорівнювати жодному зі значень -1,0.
Приклади
Квадратне рівняння
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрії
4 \sin \theta \cos \theta = 2 \sin \theta
Лінійне рівняння
y = 3x + 4
Арифметика
699 * 533
Матриця
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Рівняння одночасного
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференціації
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Інтеграція
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Обмеження
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}