ئاساسىي مەزمۇنغا ئاتلاش
z نى يېشىش
Tick mark Image

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

t^{2}-t+1=0
t نى z^{3} گە ئالماشتۇرۇڭ.
t=\frac{-\left(-1\right)±\sqrt{\left(-1\right)^{2}-4\times 1\times 1}}{2}
ax^{2}+bx+c=0 شەكلىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادراتلىق فورمۇلا ئارقىلىق يېشىشكە بولىدۇ. كىۋادراتلىق فورمۇلادىكى 1 نى a گە، -1 نى b گە ۋە 1 نى c گە ئالماشتۇرۇڭ.
t=\frac{1±\sqrt{-3}}{2}
ھېسابلاڭ.
t=\frac{1+\sqrt{3}i}{2} t=\frac{-\sqrt{3}i+1}{2}
t=\frac{1±\sqrt{-3}}{2} دېگەن تەڭلىمىنى ± پىلۇس ۋە ± مىنۇس بولغان ئەھۋاللار ئۈچۈن يېشىڭ.
z=-e^{\frac{4\pi i}{9}} z=ie^{\frac{5\pi i}{18}} z=e^{\frac{\pi i}{9}} z=-ie^{\frac{7\pi i}{18}} z=-e^{\frac{2\pi i}{9}} z=ie^{\frac{\pi i}{18}}
z=t^{3} بولغاچقا، ھەر بىر t ئۈچۈن تەڭلىمە يېشىش ئارقىلىق يېشىشكە بولىدۇ.