كۆپەيتكۈچى
\left(z+18\right)^{2}
ھېسابلاش
\left(z+18\right)^{2}
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
a+b=36 ab=1\times 324=324
ئىپادىنى گۇرۇپپىلاپ كۆپەيتىڭ. ئاۋۋال ئىپادىنى z^{2}+az+bz+324 دېگەن شەكىلدە قايتا يېزىش كېرەك. a ۋە b نى تېپىش ئۈچۈن يېشىدىغان سىستېما بېكىتىڭ.
1,324 2,162 3,108 4,81 6,54 9,36 12,27 18,18
ab مۇسبەت، شۇڭا a بىلەن b نىڭ بەلگىسى ئوخشاش a+b مۇسبەت، شۇڭا a بىلەن b نىڭ ھەر ئىككىسى مۇسبەت. ھاسىلات 324 چىقىدىغان بارلىق جۈپلەرنى تىزىڭ.
1+324=325 2+162=164 3+108=111 4+81=85 6+54=60 9+36=45 12+27=39 18+18=36
ھەر بىر جۈپنىڭ يىغىندىسىنى چىقىرىڭ.
a=18 b=18
36 دېگەن يىغىندا چىقىدىغان جۈپ ئارقىلىق يېشىلىدۇ.
\left(z^{2}+18z\right)+\left(18z+324\right)
z^{2}+36z+324 نى \left(z^{2}+18z\right)+\left(18z+324\right) شەكلىدە قايتا يېزىڭ.
z\left(z+18\right)+18\left(z+18\right)
بىرىنچى گۇرۇپپىدىن z نى، ئىككىنچى گۇرۇپپىدىن 18 نى چىقىرىڭ.
\left(z+18\right)\left(z+18\right)
تارقىتىش قانۇنى بويىچە ئومۇمىي ئەزا z+18 نى چىقىرىڭ.
\left(z+18\right)^{2}
ئىككى ئەزالىق كىۋادرات شەكلىدە قايتا يېزىڭ.
factor(z^{2}+36z+324)
ئۈچ ئەزالىق ئۈچ ئەزالىق كىۋادرات شەكلىدە بولۇپ، بىر ئومۇمىي بۆلگۈچى ئارقىلىق كۆپەيتىلىشى مۇمكىن. باش ۋە ئاياغ ئەزالارنىڭ كىۋادرات يىلتىزىنى تېپىش ئارقىلىق ئۈچ ئەزالىق كىۋادراتنىڭ كۆپەيتكۈچىسىنى تېپىشقا بولىدۇ.
\sqrt{324}=18
ئاياغ ئەزا 324 نىڭ كىۋادرات يىلتىزىنى تېپىڭ.
\left(z+18\right)^{2}
ئۈچ ئەزالىق كىۋادرات باش ۋە ئاياغ ئەزالارنىڭ كىۋادرات يىلتىزىنىڭ يىغىندىسى ياكى ئايرىمىسى بولغان ئىككى ئەزالىق كىۋادراتتۇر.
z^{2}+36z+324=0
x_{1} ۋە x_{2} كىۋادرات تەڭلىمە ax^{2}+bx+c=0 نىڭ يەشمىسى بولغاندا، كۋادراتلىق كۆپ ئەزالىقنى ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) گە ئۆزگەرتىپ يېشىشكە بولىدۇ.
z=\frac{-36±\sqrt{36^{2}-4\times 324}}{2}
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
z=\frac{-36±\sqrt{1296-4\times 324}}{2}
36 نىڭ كىۋادراتىنى تېپىڭ.
z=\frac{-36±\sqrt{1296-1296}}{2}
-4 نى 324 كە كۆپەيتىڭ.
z=\frac{-36±\sqrt{0}}{2}
1296 نى -1296 گە قوشۇڭ.
z=\frac{-36±0}{2}
0 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
z^{2}+36z+324=\left(z-\left(-18\right)\right)\left(z-\left(-18\right)\right)
ئەسلى ئىپادىنى ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ئارقىلىق يېشىڭ. -18 نى x_{1} گە ۋە -18 نى x_{2} گە ئالماشتۇرۇڭ.
z^{2}+36z+324=\left(z+18\right)\left(z+18\right)
بارلىق ئىپادىنى p-\left(-q\right) دىن p+q گە ئاددىيلاشتۇرۇڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}