ئاساسىي مەزمۇنغا ئاتلاش
z نى يېشىش
Tick mark Image
z نى تەقسىملەش
Tick mark Image

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

z=\frac{\left(4-2i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}
\frac{4-2i}{1+i} نىڭ سۈرەت ۋە مەخرەجلىرىنى مەخرەجنىڭ مۇرەككەپ قوشمىسى 1-i گە كۆپەيتىڭ.
z=\frac{\left(4-2i\right)\left(1-i\right)}{1^{2}-i^{2}}
كۆپەيتىشنى تۆۋەندىكى قائىدە ئارقىلىق كىۋادرات ئايرىمىغا ئايلاندۇرۇشقا بولىدۇ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
z=\frac{\left(4-2i\right)\left(1-i\right)}{2}
ئېنىقلىمىسى بويىچە i^{2} بولسا -1 دۇر. مەخرەجنى ھېسابلاڭ.
z=\frac{4\times 1+4\left(-i\right)-2i-2\left(-1\right)i^{2}}{2}
4-2i ۋە 1-i دېگەن مۇرەككەپ سانلارنى ئىككى ئەزالىقنى كۆپەيتكەندەك كۆپەيتىڭ.
z=\frac{4\times 1+4\left(-i\right)-2i-2\left(-1\right)\left(-1\right)}{2}
ئېنىقلىمىسى بويىچە i^{2} بولسا -1 دۇر.
z=\frac{4-4i-2i-2}{2}
4\times 1+4\left(-i\right)-2i-2\left(-1\right)\left(-1\right) دە كۆپەيتىش مەشغۇلاتى قىلىڭ.
z=\frac{4-2+\left(-4-2\right)i}{2}
4-4i-2i-2 دىكى ھەقىقىي ۋە مەۋھۇم قىسىمىنى بىرىكتۈرۈڭ.
z=\frac{2-6i}{2}
4-2+\left(-4-2\right)i دە قوشۇش مەشغۇلاتى قىلىڭ.
z=1-3i
2-6i نى 2 گە بۆلۈپ 1-3i نى چىقىرىڭ.