x نى يېشىش
x=\frac{y^{2}+6y+1}{8}
y نى يېشىش (complex solution)
y=2\sqrt{2\left(x+1\right)}-3
y=-2\sqrt{2\left(x+1\right)}-3
y نى يېشىش
y=2\sqrt{2\left(x+1\right)}-3
y=-2\sqrt{2\left(x+1\right)}-3\text{, }x\geq -1
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
-8x+6y+1=-y^{2}
ھەر ئىككى تەرەپتىن y^{2} نى ئېلىڭ. نۆلدىن ھەرقانداق سان ئېلىنسا، شۇ ساننىڭ مەنپىيسى چىقىدۇ.
-8x+1=-y^{2}-6y
ھەر ئىككى تەرەپتىن 6y نى ئېلىڭ.
-8x=-y^{2}-6y-1
ھەر ئىككى تەرەپتىن 1 نى ئېلىڭ.
\frac{-8x}{-8}=\frac{-y^{2}-6y-1}{-8}
ھەر ئىككى تەرەپنى -8 گە بۆلۈڭ.
x=\frac{-y^{2}-6y-1}{-8}
-8 گە بۆلگەندە -8 گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
x=\frac{y^{2}}{8}+\frac{3y}{4}+\frac{1}{8}
-y^{2}-6y-1 نى -8 كە بۆلۈڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}