f نى يېشىش
\left\{\begin{matrix}f=\frac{i\left(-y+\sqrt[3]{x-2}\right)}{r}\text{, }&r\neq 0\\f\in \mathrm{C}\text{, }&y=\sqrt[3]{x-2}\text{ and }r=0\end{matrix}\right.
r نى يېشىش
\left\{\begin{matrix}r=\frac{i\left(-y+\sqrt[3]{x-2}\right)}{f}\text{, }&f\neq 0\\r\in \mathrm{C}\text{, }&y=\sqrt[3]{x-2}\text{ and }f=0\end{matrix}\right.
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
y=\sqrt[3]{x-2}+ifr
1 گە i نى كۆپەيتىپ i نى چىقىرىڭ.
\sqrt[3]{x-2}+ifr=y
بارلىق ئۆزگەرگۈچى ئەزالار تەڭلىكنىڭ سول تەرىپىدە تۇرىدىغان قىلىپ ئالماشتۇرۇڭ.
ifr=y-\sqrt[3]{x-2}
ھەر ئىككى تەرەپتىن \sqrt[3]{x-2} نى ئېلىڭ.
irf=y-\sqrt[3]{x-2}
تەڭلىمە ئۆلچەملىك بولدى.
\frac{irf}{ir}=\frac{y-\sqrt[3]{x-2}}{ir}
ھەر ئىككى تەرەپنى ir گە بۆلۈڭ.
f=\frac{y-\sqrt[3]{x-2}}{ir}
ir گە بۆلگەندە ir گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
f=-\frac{i\left(y-\sqrt[3]{x-2}\right)}{r}
y-\sqrt[3]{x-2} نى ir كە بۆلۈڭ.
y=\sqrt[3]{x-2}+ifr
1 گە i نى كۆپەيتىپ i نى چىقىرىڭ.
\sqrt[3]{x-2}+ifr=y
بارلىق ئۆزگەرگۈچى ئەزالار تەڭلىكنىڭ سول تەرىپىدە تۇرىدىغان قىلىپ ئالماشتۇرۇڭ.
ifr=y-\sqrt[3]{x-2}
ھەر ئىككى تەرەپتىن \sqrt[3]{x-2} نى ئېلىڭ.
\frac{ifr}{if}=\frac{y-\sqrt[3]{x-2}}{if}
ھەر ئىككى تەرەپنى if گە بۆلۈڭ.
r=\frac{y-\sqrt[3]{x-2}}{if}
if گە بۆلگەندە if گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
r=-\frac{i\left(y-\sqrt[3]{x-2}\right)}{f}
y-\sqrt[3]{x-2} نى if كە بۆلۈڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}