p نى يېشىش
\left\{\begin{matrix}p=\frac{x^{2}}{2y}\text{, }&x\neq 0\text{ and }y\neq 0\\p\neq 0\text{, }&y=0\text{ and }x=0\end{matrix}\right.
x نى يېشىش (complex solution)
x=-\sqrt{y}\sqrt{2p}
x=\sqrt{y}\sqrt{2p}\text{, }p\neq 0
x نى يېشىش
x=\sqrt{2py}
x=-\sqrt{2py}\text{, }\left(y\geq 0\text{ and }p>0\right)\text{ or }\left(y\leq 0\text{ and }p<0\right)
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
y\times 2p=x^{2}
نۆلگە بۆلۈش بەلگىلەنمىگەچكە ئۆزگەرگۈچى مىقدار p قىممەت 0 گە تەڭ ئەمەس. تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى 2p گە كۆپەيتىڭ.
2py=x^{2}
ئەزالارنى قايتا رەتلەڭ.
2yp=x^{2}
تەڭلىمە ئۆلچەملىك بولدى.
\frac{2yp}{2y}=\frac{x^{2}}{2y}
ھەر ئىككى تەرەپنى 2y گە بۆلۈڭ.
p=\frac{x^{2}}{2y}
2y گە بۆلگەندە 2y گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
p=\frac{x^{2}}{2y}\text{, }p\neq 0
ئۆزگەرگۈچى مىقدار p قىممەت 0 گە تەڭ ئەمەس.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}