x نى يېشىش
x=5
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
\left(x-1\right)^{2}=\left(\sqrt{x+11}\right)^{2}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ كىۋادراتىنى چىقىرىڭ.
x^{2}-2x+1=\left(\sqrt{x+11}\right)^{2}
ئىككى ئەزالىقلار تېيورېمىسى \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ئارقىلىق \left(x-1\right)^{2} نى يېيىڭ.
x^{2}-2x+1=x+11
\sqrt{x+11} نىڭ 2-دەرىجىسىنى ھېسابلاپ x+11 نى چىقىرىڭ.
x^{2}-2x+1-x=11
ھەر ئىككى تەرەپتىن x نى ئېلىڭ.
x^{2}-3x+1=11
-2x بىلەن -x نى بىرىكتۈرۈپ -3x نى چىقىرىڭ.
x^{2}-3x+1-11=0
ھەر ئىككى تەرەپتىن 11 نى ئېلىڭ.
x^{2}-3x-10=0
1 دىن 11 نى ئېلىپ -10 نى چىقىرىڭ.
a+b=-3 ab=-10
تەڭلىمىنى يېشىش ئۈچۈن x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) دېگەن فورمۇلا ئارقىلىق x^{2}-3x-10 نى ھېسابلاڭ. a ۋە b نى تېپىش ئۈچۈن يېشىدىغان سىستېما بېكىتىڭ.
1,-10 2,-5
ab مەنپىي، شۇڭا a بىلەن b نىڭ بەلگىسى قارىمۇقارشى. a+b مەنپىي، شۇڭا مەنپىي ساننىڭ مۇتلەق قىممىتى مۇسبەت ساننىڭكىدىن چوڭ. ھاسىلات -10 چىقىدىغان بارلىق جۈپلەرنى تىزىڭ.
1-10=-9 2-5=-3
ھەر بىر جۈپنىڭ يىغىندىسىنى چىقىرىڭ.
a=-5 b=2
-3 دېگەن يىغىندا چىقىدىغان جۈپ ئارقىلىق يېشىلىدۇ.
\left(x-5\right)\left(x+2\right)
كۆپەيتكەن \left(x+a\right)\left(x+b\right) دېگەن ئىپادىنى تاپقان قىممەت ئارقىلىق قايتا يېزىڭ.
x=5 x=-2
تەڭلىمىنى يېشىش ئۈچۈن x-5=0 بىلەن x+2=0 نى يېشىڭ.
5-1=\sqrt{5+11}
تەڭلىمە x-1=\sqrt{x+11} دىكى 5 نى x گە ئالماشتۇرۇڭ.
4=4
ئاددىيلاشتۇرۇڭ. قىممەت x=5 تەڭلىمىنىڭ يېشىمى.
-2-1=\sqrt{-2+11}
تەڭلىمە x-1=\sqrt{x+11} دىكى -2 نى x گە ئالماشتۇرۇڭ.
-3=3
ئاددىيلاشتۇرۇڭ. قىممەت x=-2 تەڭلىمىنىڭ يېشىمى ئەمەس، چۈنكى سول ۋە ئوڭ قولدا قارىمۇ-قارشى بەلگىلەر بار.
x=5
تەڭلىمە x-1=\sqrt{x+11}نىڭ بىردىنبىر يېشىمى بار.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}