x نى يېشىش
x=0
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
x^{2}=\left(\sqrt{x+x^{2}}\right)^{2}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ كىۋادراتىنى چىقىرىڭ.
x^{2}=x+x^{2}
\sqrt{x+x^{2}} نىڭ 2-دەرىجىسىنى ھېسابلاپ x+x^{2} نى چىقىرىڭ.
x^{2}-x=x^{2}
ھەر ئىككى تەرەپتىن x نى ئېلىڭ.
x^{2}-x-x^{2}=0
ھەر ئىككى تەرەپتىن x^{2} نى ئېلىڭ.
-x=0
x^{2} بىلەن -x^{2} نى بىرىكتۈرۈپ 0 نى چىقىرىڭ.
x=0
ئىككى ساننىڭ ھاسىلاتى كەمىدە بىر سان 0 بولغاندا 0 بولىدۇ. -1 سان 0 گە تەڭ بولمىغاچقا x چوقۇم 0 تەڭ بولۇشى كېرەك.
0=\sqrt{0+0^{2}}
تەڭلىمە x=\sqrt{x+x^{2}} دىكى 0 نى x گە ئالماشتۇرۇڭ.
0=0
ئاددىيلاشتۇرۇڭ. قىممەت x=0 تەڭلىمىنىڭ يېشىمى.
x=0
تەڭلىمە x=\sqrt{x^{2}+x}نىڭ بىردىنبىر يېشىمى بار.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}