x نى يېشىش
x=-2
x=0
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
\left(x+2\right)^{2}=\left(\sqrt{4-x^{2}}\right)^{2}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ كىۋادراتىنى چىقىرىڭ.
x^{2}+4x+4=\left(\sqrt{4-x^{2}}\right)^{2}
ئىككى ئەزالىقلار تېيورېمىسى \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ئارقىلىق \left(x+2\right)^{2} نى يېيىڭ.
x^{2}+4x+4=4-x^{2}
\sqrt{4-x^{2}} نىڭ 2-دەرىجىسىنى ھېسابلاپ 4-x^{2} نى چىقىرىڭ.
x^{2}+4x+4-4=-x^{2}
ھەر ئىككى تەرەپتىن 4 نى ئېلىڭ.
x^{2}+4x=-x^{2}
4 دىن 4 نى ئېلىپ 0 نى چىقىرىڭ.
x^{2}+4x+x^{2}=0
x^{2} نى ھەر ئىككى تەرەپكە قوشۇڭ.
2x^{2}+4x=0
x^{2} بىلەن x^{2} نى بىرىكتۈرۈپ 2x^{2} نى چىقىرىڭ.
x\left(2x+4\right)=0
x نى ئاجرىتىپ چىقىرىڭ.
x=0 x=-2
تەڭلىمىنى يېشىش ئۈچۈن x=0 بىلەن 2x+4=0 نى يېشىڭ.
0+2=\sqrt{4-0^{2}}
تەڭلىمە x+2=\sqrt{4-x^{2}} دىكى 0 نى x گە ئالماشتۇرۇڭ.
2=2
ئاددىيلاشتۇرۇڭ. قىممەت x=0 تەڭلىمىنىڭ يېشىمى.
-2+2=\sqrt{4-\left(-2\right)^{2}}
تەڭلىمە x+2=\sqrt{4-x^{2}} دىكى -2 نى x گە ئالماشتۇرۇڭ.
0=0
ئاددىيلاشتۇرۇڭ. قىممەت x=-2 تەڭلىمىنىڭ يېشىمى.
x=0 x=-2
x+2=\sqrt{4-x^{2}}نىڭ بارلىق ھەل قىلىش چارىلىرىنىڭ تىزىملىكى.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}