ئاساسىي مەزمۇنغا ئاتلاش
x نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

-2x-x^{2}+4-4=0
x بىلەن -3x نى بىرىكتۈرۈپ -2x نى چىقىرىڭ.
-2x-x^{2}=0
4 دىن 4 نى ئېلىپ 0 نى چىقىرىڭ.
x\left(-2-x\right)=0
x نى ئاجرىتىپ چىقىرىڭ.
x=0 x=-2
تەڭلىمىنى يېشىش ئۈچۈن x=0 بىلەن -2-x=0 نى يېشىڭ.
-2x-x^{2}+4-4=0
x بىلەن -3x نى بىرىكتۈرۈپ -2x نى چىقىرىڭ.
-2x-x^{2}=0
4 دىن 4 نى ئېلىپ 0 نى چىقىرىڭ.
-x^{2}-2x=0
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}}}{2\left(-1\right)}
بۇ تەڭلىمە ئۆلچەملىك شەكىلدە: ax^{2}+bx+c=0. كىۋادراتلىق فورمۇلا \frac{-b±\sqrt{b^{2}-4ac}}{2a} دا -1 نى a گە، -2 نى b گە ۋە 0 نى c گە ئالماشتۇرۇڭ.
x=\frac{-\left(-2\right)±2}{2\left(-1\right)}
\left(-2\right)^{2} نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=\frac{2±2}{2\left(-1\right)}
-2 نىڭ قارشىسى 2 دۇر.
x=\frac{2±2}{-2}
2 نى -1 كە كۆپەيتىڭ.
x=\frac{4}{-2}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{2±2}{-2} نى يېشىڭ. 2 نى 2 گە قوشۇڭ.
x=-2
4 نى -2 كە بۆلۈڭ.
x=\frac{0}{-2}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{2±2}{-2} نى يېشىڭ. 2 دىن 2 نى ئېلىڭ.
x=0
0 نى -2 كە بۆلۈڭ.
x=-2 x=0
تەڭلىمە يېشىلدى.
-2x-x^{2}+4-4=0
x بىلەن -3x نى بىرىكتۈرۈپ -2x نى چىقىرىڭ.
-2x-x^{2}=0
4 دىن 4 نى ئېلىپ 0 نى چىقىرىڭ.
-x^{2}-2x=0
بۇنىڭغا ئوخشاش كىۋادراتلىق تەڭلىمىنى كىۋادراتقا كەلتۈرۈش ئارقىلىق يېشىشكە بولىدۇ. كىۋادراتقا كەلتۈرۈش ئۈچۈن تەڭلىمە x^{2}+bx=c دېگەن شەكىلدە بولۇشى كېرەك.
\frac{-x^{2}-2x}{-1}=\frac{0}{-1}
ھەر ئىككى تەرەپنى -1 گە بۆلۈڭ.
x^{2}+\left(-\frac{2}{-1}\right)x=\frac{0}{-1}
-1 گە بۆلگەندە -1 گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
x^{2}+2x=\frac{0}{-1}
-2 نى -1 كە بۆلۈڭ.
x^{2}+2x=0
0 نى -1 كە بۆلۈڭ.
x^{2}+2x+1^{2}=1^{2}
2، يەنى x ئەزانىڭ كوئېففىتسېنتىنى 2 گە بۆلۈپ، 1 نى چىقىرىڭ. ئاندىن تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 1 نىڭ كىۋادراتىنى قوشۇڭ. بۇ باسقۇچ ئارقىلىق تەڭلىمىنىڭ سول تەرىپى پۈتۈن سانلىق كىۋادراتقا ئايلىنىدۇ.
x^{2}+2x+1=1
1 نىڭ كىۋادراتىنى تېپىڭ.
\left(x+1\right)^{2}=1
كۆپەيتكۈچى x^{2}+2x+1. ئادەتتە x^{2}+bx+c پۈتۈن سانلىق كىۋادرات بولسا، ئۇنىڭ كۆپەيتكۈچىسى ھەردائىم \left(x+\frac{b}{2}\right)^{2} بولىدۇ.
\sqrt{\left(x+1\right)^{2}}=\sqrt{1}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x+1=1 x+1=-1
ئاددىيلاشتۇرۇڭ.
x=0 x=-2
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 1 نى ئېلىڭ.