ئاساسىي مەزمۇنغا ئاتلاش
x نى يېشىش (complex solution)
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

-2x^{2}+x=8
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
-2x^{2}+x-8=8-8
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 8 نى ئېلىڭ.
-2x^{2}+x-8=0
8 دىن ئۆزىنى ئالسىڭىز 0 قالىدۇ.
x=\frac{-1±\sqrt{1^{2}-4\left(-2\right)\left(-8\right)}}{2\left(-2\right)}
بۇ تەڭلىمە ئۆلچەملىك شەكىلدە: ax^{2}+bx+c=0. كىۋادراتلىق فورمۇلا \frac{-b±\sqrt{b^{2}-4ac}}{2a} دا -2 نى a گە، 1 نى b گە ۋە -8 نى c گە ئالماشتۇرۇڭ.
x=\frac{-1±\sqrt{1-4\left(-2\right)\left(-8\right)}}{2\left(-2\right)}
1 نىڭ كىۋادراتىنى تېپىڭ.
x=\frac{-1±\sqrt{1+8\left(-8\right)}}{2\left(-2\right)}
-4 نى -2 كە كۆپەيتىڭ.
x=\frac{-1±\sqrt{1-64}}{2\left(-2\right)}
8 نى -8 كە كۆپەيتىڭ.
x=\frac{-1±\sqrt{-63}}{2\left(-2\right)}
1 نى -64 گە قوشۇڭ.
x=\frac{-1±3\sqrt{7}i}{2\left(-2\right)}
-63 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=\frac{-1±3\sqrt{7}i}{-4}
2 نى -2 كە كۆپەيتىڭ.
x=\frac{-1+3\sqrt{7}i}{-4}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{-1±3\sqrt{7}i}{-4} نى يېشىڭ. -1 نى 3i\sqrt{7} گە قوشۇڭ.
x=\frac{-3\sqrt{7}i+1}{4}
-1+3i\sqrt{7} نى -4 كە بۆلۈڭ.
x=\frac{-3\sqrt{7}i-1}{-4}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{-1±3\sqrt{7}i}{-4} نى يېشىڭ. -1 دىن 3i\sqrt{7} نى ئېلىڭ.
x=\frac{1+3\sqrt{7}i}{4}
-1-3i\sqrt{7} نى -4 كە بۆلۈڭ.
x=\frac{-3\sqrt{7}i+1}{4} x=\frac{1+3\sqrt{7}i}{4}
تەڭلىمە يېشىلدى.
-2x^{2}+x=8
بۇنىڭغا ئوخشاش كىۋادراتلىق تەڭلىمىنى كىۋادراتقا كەلتۈرۈش ئارقىلىق يېشىشكە بولىدۇ. كىۋادراتقا كەلتۈرۈش ئۈچۈن تەڭلىمە x^{2}+bx=c دېگەن شەكىلدە بولۇشى كېرەك.
\frac{-2x^{2}+x}{-2}=\frac{8}{-2}
ھەر ئىككى تەرەپنى -2 گە بۆلۈڭ.
x^{2}+\frac{1}{-2}x=\frac{8}{-2}
-2 گە بۆلگەندە -2 گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
x^{2}-\frac{1}{2}x=\frac{8}{-2}
1 نى -2 كە بۆلۈڭ.
x^{2}-\frac{1}{2}x=-4
8 نى -2 كە بۆلۈڭ.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=-4+\left(-\frac{1}{4}\right)^{2}
-\frac{1}{2}، يەنى x ئەزانىڭ كوئېففىتسېنتىنى 2 گە بۆلۈپ، -\frac{1}{4} نى چىقىرىڭ. ئاندىن تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە -\frac{1}{4} نىڭ كىۋادراتىنى قوشۇڭ. بۇ باسقۇچ ئارقىلىق تەڭلىمىنىڭ سول تەرىپى پۈتۈن سانلىق كىۋادراتقا ئايلىنىدۇ.
x^{2}-\frac{1}{2}x+\frac{1}{16}=-4+\frac{1}{16}
كەسىرنىڭ سۈرەت ۋە مەخرەجلىرىنىڭ كىۋادراتىنى تېپىش ئارقىلىق -\frac{1}{4} نىڭ كىۋادراتىنى تېپىڭ.
x^{2}-\frac{1}{2}x+\frac{1}{16}=-\frac{63}{16}
-4 نى \frac{1}{16} گە قوشۇڭ.
\left(x-\frac{1}{4}\right)^{2}=-\frac{63}{16}
كۆپەيتكۈچى x^{2}-\frac{1}{2}x+\frac{1}{16}. ئادەتتە x^{2}+bx+c پۈتۈن سانلىق كىۋادرات بولسا، ئۇنىڭ كۆپەيتكۈچىسى ھەردائىم \left(x+\frac{b}{2}\right)^{2} بولىدۇ.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{-\frac{63}{16}}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x-\frac{1}{4}=\frac{3\sqrt{7}i}{4} x-\frac{1}{4}=-\frac{3\sqrt{7}i}{4}
ئاددىيلاشتۇرۇڭ.
x=\frac{1+3\sqrt{7}i}{4} x=\frac{-3\sqrt{7}i+1}{4}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{1}{4} نى قوشۇڭ.