x نى يېشىش
x=4
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
-\sqrt{36-5x}=-x
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن x نى ئېلىڭ.
\sqrt{36-5x}=x
-1 نى ھەر ئىككى تەرەپتىن يېيىشتۈرۈڭ.
\left(\sqrt{36-5x}\right)^{2}=x^{2}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ كىۋادراتىنى چىقىرىڭ.
36-5x=x^{2}
\sqrt{36-5x} نىڭ 2-دەرىجىسىنى ھېسابلاپ 36-5x نى چىقىرىڭ.
36-5x-x^{2}=0
ھەر ئىككى تەرەپتىن x^{2} نى ئېلىڭ.
-x^{2}-5x+36=0
كۆپ ئەزالىقنى ئۆلچەملىك شەكىلدە رەتلەڭ. ئەزالارنى چوڭدىن كىچىككە تىزىڭ.
a+b=-5 ab=-36=-36
تەڭلىمىنى يېشىش ئۈچۈن گۇرۇپپىلاش ئارقىلىق سول تەرەپنى كۆپەيتىپ چىقىرىڭ. ئاۋۋال سول تەرەپنى -x^{2}+ax+bx+36 شەكلىدە يېزىش كېرەك. a ۋە b نى تېپىش ئۈچۈن يېشىدىغان سىستېما بېكىتىڭ.
1,-36 2,-18 3,-12 4,-9 6,-6
ab مەنپىي، شۇڭا a بىلەن b نىڭ بەلگىسى قارىمۇقارشى. a+b مەنپىي، شۇڭا مەنپىي ساننىڭ مۇتلەق قىممىتى مۇسبەت ساننىڭكىدىن چوڭ. ھاسىلات -36 چىقىدىغان بارلىق جۈپلەرنى تىزىڭ.
1-36=-35 2-18=-16 3-12=-9 4-9=-5 6-6=0
ھەر بىر جۈپنىڭ يىغىندىسىنى چىقىرىڭ.
a=4 b=-9
-5 دېگەن يىغىندا چىقىدىغان جۈپ ئارقىلىق يېشىلىدۇ.
\left(-x^{2}+4x\right)+\left(-9x+36\right)
-x^{2}-5x+36 نى \left(-x^{2}+4x\right)+\left(-9x+36\right) شەكلىدە قايتا يېزىڭ.
x\left(-x+4\right)+9\left(-x+4\right)
بىرىنچى گۇرۇپپىدىن x نى، ئىككىنچى گۇرۇپپىدىن 9 نى چىقىرىڭ.
\left(-x+4\right)\left(x+9\right)
تارقىتىش قانۇنى بويىچە ئومۇمىي ئەزا -x+4 نى چىقىرىڭ.
x=4 x=-9
تەڭلىمىنى يېشىش ئۈچۈن -x+4=0 بىلەن x+9=0 نى يېشىڭ.
4-\sqrt{36-5\times 4}=0
تەڭلىمە x-\sqrt{36-5x}=0 دىكى 4 نى x گە ئالماشتۇرۇڭ.
0=0
ئاددىيلاشتۇرۇڭ. قىممەت x=4 تەڭلىمىنىڭ يېشىمى.
-9-\sqrt{36-5\left(-9\right)}=0
تەڭلىمە x-\sqrt{36-5x}=0 دىكى -9 نى x گە ئالماشتۇرۇڭ.
-18=0
ئاددىيلاشتۇرۇڭ. قىممەت x=-9 تەڭلىمىنىڭ يېشىمى ئەمەس.
x=4
تەڭلىمە \sqrt{36-5x}=xنىڭ بىردىنبىر يېشىمى بار.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}