K نى يېشىش
\left\{\begin{matrix}K=\frac{x\left(xy-x+y^{2}\right)}{x^{3}+y^{3}}\text{, }&x\neq -y\\K\in \mathrm{R}\text{, }&x=0\text{ and }y=0\end{matrix}\right.
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
\left(x^{2}+xy\right)y-x^{2}=K\left(x^{3}+y^{3}\right)
تارقىتىش قانۇنى بويىچە x نى x+y گە كۆپەيتىڭ.
x^{2}y+xy^{2}-x^{2}=K\left(x^{3}+y^{3}\right)
تارقىتىش قانۇنى بويىچە x^{2}+xy نى y گە كۆپەيتىڭ.
x^{2}y+xy^{2}-x^{2}=Kx^{3}+Ky^{3}
تارقىتىش قانۇنى بويىچە K نى x^{3}+y^{3} گە كۆپەيتىڭ.
Kx^{3}+Ky^{3}=x^{2}y+xy^{2}-x^{2}
بارلىق ئۆزگەرگۈچى ئەزالار تەڭلىكنىڭ سول تەرىپىدە تۇرىدىغان قىلىپ ئالماشتۇرۇڭ.
\left(x^{3}+y^{3}\right)K=x^{2}y+xy^{2}-x^{2}
K نى ئۆز ئىچىگە ئالغان بارلىق ئەزالارنى بىرىكتۈرۈڭ.
\left(x^{3}+y^{3}\right)K=yx^{2}+xy^{2}-x^{2}
تەڭلىمە ئۆلچەملىك بولدى.
\frac{\left(x^{3}+y^{3}\right)K}{x^{3}+y^{3}}=\frac{x\left(xy-x+y^{2}\right)}{x^{3}+y^{3}}
ھەر ئىككى تەرەپنى x^{3}+y^{3} گە بۆلۈڭ.
K=\frac{x\left(xy-x+y^{2}\right)}{x^{3}+y^{3}}
x^{3}+y^{3} گە بۆلگەندە x^{3}+y^{3} گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
K=\frac{x\left(xy-x+y^{2}\right)}{\left(x+y\right)\left(x^{2}-xy+y^{2}\right)}
x\left(-x+y^{2}+yx\right) نى x^{3}+y^{3} كە بۆلۈڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}