ئاساسىي مەزمۇنغا ئاتلاش
x نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

a+b=-1 ab=-30
تەڭلىمىنى يېشىش ئۈچۈن x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) دېگەن فورمۇلا ئارقىلىق x^{2}-x-30 نى ھېسابلاڭ. a ۋە b نى تېپىش ئۈچۈن يېشىدىغان سىستېما بېكىتىڭ.
1,-30 2,-15 3,-10 5,-6
ab مەنپىي، شۇڭا a بىلەن b نىڭ بەلگىسى قارىمۇقارشى. a+b مەنپىي، شۇڭا مەنپىي ساننىڭ مۇتلەق قىممىتى مۇسبەت ساننىڭكىدىن چوڭ. ھاسىلات -30 چىقىدىغان بارلىق جۈپلەرنى تىزىڭ.
1-30=-29 2-15=-13 3-10=-7 5-6=-1
ھەر بىر جۈپنىڭ يىغىندىسىنى چىقىرىڭ.
a=-6 b=5
-1 دېگەن يىغىندا چىقىدىغان جۈپ ئارقىلىق يېشىلىدۇ.
\left(x-6\right)\left(x+5\right)
كۆپەيتكەن \left(x+a\right)\left(x+b\right) دېگەن ئىپادىنى تاپقان قىممەت ئارقىلىق قايتا يېزىڭ.
x=6 x=-5
تەڭلىمىنى يېشىش ئۈچۈن x-6=0 بىلەن x+5=0 نى يېشىڭ.
a+b=-1 ab=1\left(-30\right)=-30
تەڭلىمىنى يېشىش ئۈچۈن گۇرۇپپىلاش ئارقىلىق سول تەرەپنى كۆپەيتىپ چىقىرىڭ. ئاۋۋال سول تەرەپنى x^{2}+ax+bx-30 شەكلىدە يېزىش كېرەك. a ۋە b نى تېپىش ئۈچۈن يېشىدىغان سىستېما بېكىتىڭ.
1,-30 2,-15 3,-10 5,-6
ab مەنپىي، شۇڭا a بىلەن b نىڭ بەلگىسى قارىمۇقارشى. a+b مەنپىي، شۇڭا مەنپىي ساننىڭ مۇتلەق قىممىتى مۇسبەت ساننىڭكىدىن چوڭ. ھاسىلات -30 چىقىدىغان بارلىق جۈپلەرنى تىزىڭ.
1-30=-29 2-15=-13 3-10=-7 5-6=-1
ھەر بىر جۈپنىڭ يىغىندىسىنى چىقىرىڭ.
a=-6 b=5
-1 دېگەن يىغىندا چىقىدىغان جۈپ ئارقىلىق يېشىلىدۇ.
\left(x^{2}-6x\right)+\left(5x-30\right)
x^{2}-x-30 نى \left(x^{2}-6x\right)+\left(5x-30\right) شەكلىدە قايتا يېزىڭ.
x\left(x-6\right)+5\left(x-6\right)
بىرىنچى گۇرۇپپىدىن x نى، ئىككىنچى گۇرۇپپىدىن 5 نى چىقىرىڭ.
\left(x-6\right)\left(x+5\right)
تارقىتىش قانۇنى بويىچە ئومۇمىي ئەزا x-6 نى چىقىرىڭ.
x=6 x=-5
تەڭلىمىنى يېشىش ئۈچۈن x-6=0 بىلەن x+5=0 نى يېشىڭ.
x^{2}-x-30=0
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-30\right)}}{2}
بۇ تەڭلىمە ئۆلچەملىك شەكىلدە: ax^{2}+bx+c=0. كىۋادراتلىق فورمۇلا \frac{-b±\sqrt{b^{2}-4ac}}{2a} دا 1 نى a گە، -1 نى b گە ۋە -30 نى c گە ئالماشتۇرۇڭ.
x=\frac{-\left(-1\right)±\sqrt{1+120}}{2}
-4 نى -30 كە كۆپەيتىڭ.
x=\frac{-\left(-1\right)±\sqrt{121}}{2}
1 نى 120 گە قوشۇڭ.
x=\frac{-\left(-1\right)±11}{2}
121 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=\frac{1±11}{2}
-1 نىڭ قارشىسى 1 دۇر.
x=\frac{12}{2}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{1±11}{2} نى يېشىڭ. 1 نى 11 گە قوشۇڭ.
x=6
12 نى 2 كە بۆلۈڭ.
x=-\frac{10}{2}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{1±11}{2} نى يېشىڭ. 1 دىن 11 نى ئېلىڭ.
x=-5
-10 نى 2 كە بۆلۈڭ.
x=6 x=-5
تەڭلىمە يېشىلدى.
x^{2}-x-30=0
بۇنىڭغا ئوخشاش كىۋادراتلىق تەڭلىمىنى كىۋادراتقا كەلتۈرۈش ئارقىلىق يېشىشكە بولىدۇ. كىۋادراتقا كەلتۈرۈش ئۈچۈن تەڭلىمە x^{2}+bx=c دېگەن شەكىلدە بولۇشى كېرەك.
x^{2}-x-30-\left(-30\right)=-\left(-30\right)
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 30 نى قوشۇڭ.
x^{2}-x=-\left(-30\right)
-30 دىن ئۆزىنى ئالسىڭىز 0 قالىدۇ.
x^{2}-x=30
0 دىن -30 نى ئېلىڭ.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=30+\left(-\frac{1}{2}\right)^{2}
-1، يەنى x ئەزانىڭ كوئېففىتسېنتىنى 2 گە بۆلۈپ، -\frac{1}{2} نى چىقىرىڭ. ئاندىن تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە -\frac{1}{2} نىڭ كىۋادراتىنى قوشۇڭ. بۇ باسقۇچ ئارقىلىق تەڭلىمىنىڭ سول تەرىپى پۈتۈن سانلىق كىۋادراتقا ئايلىنىدۇ.
x^{2}-x+\frac{1}{4}=30+\frac{1}{4}
كەسىرنىڭ سۈرەت ۋە مەخرەجلىرىنىڭ كىۋادراتىنى تېپىش ئارقىلىق -\frac{1}{2} نىڭ كىۋادراتىنى تېپىڭ.
x^{2}-x+\frac{1}{4}=\frac{121}{4}
30 نى \frac{1}{4} گە قوشۇڭ.
\left(x-\frac{1}{2}\right)^{2}=\frac{121}{4}
كۆپەيتكۈچى x^{2}-x+\frac{1}{4}. ئادەتتە x^{2}+bx+c پۈتۈن سانلىق كىۋادرات بولسا، ئۇنىڭ كۆپەيتكۈچىسى ھەردائىم \left(x+\frac{b}{2}\right)^{2} بولىدۇ.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{121}{4}}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x-\frac{1}{2}=\frac{11}{2} x-\frac{1}{2}=-\frac{11}{2}
ئاددىيلاشتۇرۇڭ.
x=6 x=-5
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{1}{2} نى قوشۇڭ.