ئاساسىي مەزمۇنغا ئاتلاش
x نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

x^{2}-7x+12=0
تەڭسىزلىكنى يېشىش ئۈچۈن سول تەرەپنى كۆپەيتىڭ. x_{1} ۋە x_{2} كىۋادرات تەڭلىمە ax^{2}+bx+c=0 نىڭ يەشمىسى بولغاندا، كۋادراتلىق كۆپ ئەزالىقنى ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) گە ئۆزگەرتىپ يېشىشكە بولىدۇ.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 1\times 12}}{2}
ax^{2}+bx+c=0 شەكلىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادراتلىق فورمۇلا ئارقىلىق يېشىشكە بولىدۇ. كىۋادراتلىق فورمۇلادىكى 1 نى a گە، -7 نى b گە ۋە 12 نى c گە ئالماشتۇرۇڭ.
x=\frac{7±1}{2}
ھېسابلاڭ.
x=4 x=3
x=\frac{7±1}{2} دېگەن تەڭلىمىنى ± پىلۇس ۋە ± مىنۇس بولغان ئەھۋاللار ئۈچۈن يېشىڭ.
\left(x-4\right)\left(x-3\right)\leq 0
ئېرىشكەن يېشىش ئۇسۇلى ئارقىلىق تەڭسىزلىكنى قايتا يېزىڭ.
x-4\geq 0 x-3\leq 0
ھاسىلاتنىڭ ≤0 بولۇشى ئۈچۈن x-4 ۋە x-3 دىن بىرى ≥0 ۋە يەنە بىرى ≤0 بولۇشى كېرەك. x-4\geq 0 ۋە x-3\leq 0 بولغان چاغدىكى ئەھۋالنى ئويلىشىڭ.
x\in \emptyset
بۇ ھەرقانداق x ئۈچۈن خاتا.
x-3\geq 0 x-4\leq 0
x-4\leq 0 ۋە x-3\geq 0 بولغان چاغدىكى ئەھۋالنى ئويلىشىڭ.
x\in \begin{bmatrix}3,4\end{bmatrix}
ھەر ئىككى تەڭسىزلىكنى قانائەتلەندۈرىدىغان يېشىم x\in \left[3,4\right] دۇر.
x\in \begin{bmatrix}3,4\end{bmatrix}
ئاخىرقى يېشىم ئېرىشكەن يېشىملەرنىڭ بىرىكمىسىدۇر.