ئاساسىي مەزمۇنغا ئاتلاش
كۆپەيتكۈچى
Tick mark Image
ھېسابلاش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

a+b=-6 ab=1\left(-55\right)=-55
ئىپادىنى گۇرۇپپىلاپ كۆپەيتىڭ. ئاۋۋال ئىپادىنى x^{2}+ax+bx-55 دېگەن شەكىلدە قايتا يېزىش كېرەك. a ۋە b نى تېپىش ئۈچۈن يېشىدىغان سىستېما بېكىتىڭ.
1,-55 5,-11
ab مەنپىي، شۇڭا a بىلەن b نىڭ بەلگىسى قارىمۇقارشى. a+b مەنپىي، شۇڭا مەنپىي ساننىڭ مۇتلەق قىممىتى مۇسبەت ساننىڭكىدىن چوڭ. ھاسىلات -55 چىقىدىغان بارلىق جۈپلەرنى تىزىڭ.
1-55=-54 5-11=-6
ھەر بىر جۈپنىڭ يىغىندىسىنى چىقىرىڭ.
a=-11 b=5
-6 دېگەن يىغىندا چىقىدىغان جۈپ ئارقىلىق يېشىلىدۇ.
\left(x^{2}-11x\right)+\left(5x-55\right)
x^{2}-6x-55 نى \left(x^{2}-11x\right)+\left(5x-55\right) شەكلىدە قايتا يېزىڭ.
x\left(x-11\right)+5\left(x-11\right)
بىرىنچى گۇرۇپپىدىن x نى، ئىككىنچى گۇرۇپپىدىن 5 نى چىقىرىڭ.
\left(x-11\right)\left(x+5\right)
تارقىتىش قانۇنى بويىچە ئومۇمىي ئەزا x-11 نى چىقىرىڭ.
x^{2}-6x-55=0
x_{1} ۋە x_{2} كىۋادرات تەڭلىمە ax^{2}+bx+c=0 نىڭ يەشمىسى بولغاندا، كۋادراتلىق كۆپ ئەزالىقنى ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) گە ئۆزگەرتىپ يېشىشكە بولىدۇ.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-55\right)}}{2}
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-55\right)}}{2}
-6 نىڭ كىۋادراتىنى تېپىڭ.
x=\frac{-\left(-6\right)±\sqrt{36+220}}{2}
-4 نى -55 كە كۆپەيتىڭ.
x=\frac{-\left(-6\right)±\sqrt{256}}{2}
36 نى 220 گە قوشۇڭ.
x=\frac{-\left(-6\right)±16}{2}
256 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=\frac{6±16}{2}
-6 نىڭ قارشىسى 6 دۇر.
x=\frac{22}{2}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{6±16}{2} نى يېشىڭ. 6 نى 16 گە قوشۇڭ.
x=11
22 نى 2 كە بۆلۈڭ.
x=-\frac{10}{2}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{6±16}{2} نى يېشىڭ. 6 دىن 16 نى ئېلىڭ.
x=-5
-10 نى 2 كە بۆلۈڭ.
x^{2}-6x-55=\left(x-11\right)\left(x-\left(-5\right)\right)
ئەسلى ئىپادىنى ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ئارقىلىق يېشىڭ. 11 نى x_{1} گە ۋە -5 نى x_{2} گە ئالماشتۇرۇڭ.
x^{2}-6x-55=\left(x-11\right)\left(x+5\right)
بارلىق ئىپادىنى p-\left(-q\right) دىن p+q گە ئاددىيلاشتۇرۇڭ.