كۆپەيتكۈچى
\left(x-7\right)\left(x+2\right)
ھېسابلاش
\left(x-7\right)\left(x+2\right)
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
a+b=-5 ab=1\left(-14\right)=-14
ئىپادىنى گۇرۇپپىلاپ كۆپەيتىڭ. ئاۋۋال ئىپادىنى x^{2}+ax+bx-14 دېگەن شەكىلدە قايتا يېزىش كېرەك. a ۋە b نى تېپىش ئۈچۈن يېشىدىغان سىستېما بېكىتىڭ.
1,-14 2,-7
ab مەنپىي، شۇڭا a بىلەن b نىڭ بەلگىسى قارىمۇقارشى. a+b مەنپىي، شۇڭا مەنپىي ساننىڭ مۇتلەق قىممىتى مۇسبەت ساننىڭكىدىن چوڭ. ھاسىلات -14 چىقىدىغان بارلىق جۈپلەرنى تىزىڭ.
1-14=-13 2-7=-5
ھەر بىر جۈپنىڭ يىغىندىسىنى چىقىرىڭ.
a=-7 b=2
-5 دېگەن يىغىندا چىقىدىغان جۈپ ئارقىلىق يېشىلىدۇ.
\left(x^{2}-7x\right)+\left(2x-14\right)
x^{2}-5x-14 نى \left(x^{2}-7x\right)+\left(2x-14\right) شەكلىدە قايتا يېزىڭ.
x\left(x-7\right)+2\left(x-7\right)
بىرىنچى گۇرۇپپىدىن x نى، ئىككىنچى گۇرۇپپىدىن 2 نى چىقىرىڭ.
\left(x-7\right)\left(x+2\right)
تارقىتىش قانۇنى بويىچە ئومۇمىي ئەزا x-7 نى چىقىرىڭ.
x^{2}-5x-14=0
x_{1} ۋە x_{2} كىۋادرات تەڭلىمە ax^{2}+bx+c=0 نىڭ يەشمىسى بولغاندا، كۋادراتلىق كۆپ ئەزالىقنى ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) گە ئۆزگەرتىپ يېشىشكە بولىدۇ.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-14\right)}}{2}
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
x=\frac{-\left(-5\right)±\sqrt{25-4\left(-14\right)}}{2}
-5 نىڭ كىۋادراتىنى تېپىڭ.
x=\frac{-\left(-5\right)±\sqrt{25+56}}{2}
-4 نى -14 كە كۆپەيتىڭ.
x=\frac{-\left(-5\right)±\sqrt{81}}{2}
25 نى 56 گە قوشۇڭ.
x=\frac{-\left(-5\right)±9}{2}
81 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=\frac{5±9}{2}
-5 نىڭ قارشىسى 5 دۇر.
x=\frac{14}{2}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{5±9}{2} نى يېشىڭ. 5 نى 9 گە قوشۇڭ.
x=7
14 نى 2 كە بۆلۈڭ.
x=-\frac{4}{2}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{5±9}{2} نى يېشىڭ. 5 دىن 9 نى ئېلىڭ.
x=-2
-4 نى 2 كە بۆلۈڭ.
x^{2}-5x-14=\left(x-7\right)\left(x-\left(-2\right)\right)
ئەسلى ئىپادىنى ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ئارقىلىق يېشىڭ. 7 نى x_{1} گە ۋە -2 نى x_{2} گە ئالماشتۇرۇڭ.
x^{2}-5x-14=\left(x-7\right)\left(x+2\right)
بارلىق ئىپادىنى p-\left(-q\right) دىن p+q گە ئاددىيلاشتۇرۇڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}