x نى يېشىش
x=4
x=7
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
x^{2}-11x+28=0
28 نى ھەر ئىككى تەرەپكە قوشۇڭ.
a+b=-11 ab=28
تەڭلىمىنى يېشىش ئۈچۈن x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) دېگەن فورمۇلا ئارقىلىق x^{2}-11x+28 نى ھېسابلاڭ. a ۋە b نى تېپىش ئۈچۈن يېشىدىغان سىستېما بېكىتىڭ.
-1,-28 -2,-14 -4,-7
ab مۇسبەت، شۇڭا a بىلەن b نىڭ بەلگىسى ئوخشاش a+b مەنپىي، شۇڭا a بىلەن b نىڭ ھەر ئىككىسى مەنپىي. ھاسىلات 28 چىقىدىغان بارلىق جۈپلەرنى تىزىڭ.
-1-28=-29 -2-14=-16 -4-7=-11
ھەر بىر جۈپنىڭ يىغىندىسىنى چىقىرىڭ.
a=-7 b=-4
-11 دېگەن يىغىندا چىقىدىغان جۈپ ئارقىلىق يېشىلىدۇ.
\left(x-7\right)\left(x-4\right)
كۆپەيتكەن \left(x+a\right)\left(x+b\right) دېگەن ئىپادىنى تاپقان قىممەت ئارقىلىق قايتا يېزىڭ.
x=7 x=4
تەڭلىمىنى يېشىش ئۈچۈن x-7=0 بىلەن x-4=0 نى يېشىڭ.
x^{2}-11x+28=0
28 نى ھەر ئىككى تەرەپكە قوشۇڭ.
a+b=-11 ab=1\times 28=28
تەڭلىمىنى يېشىش ئۈچۈن گۇرۇپپىلاش ئارقىلىق سول تەرەپنى كۆپەيتىپ چىقىرىڭ. ئاۋۋال سول تەرەپنى x^{2}+ax+bx+28 شەكلىدە يېزىش كېرەك. a ۋە b نى تېپىش ئۈچۈن يېشىدىغان سىستېما بېكىتىڭ.
-1,-28 -2,-14 -4,-7
ab مۇسبەت، شۇڭا a بىلەن b نىڭ بەلگىسى ئوخشاش a+b مەنپىي، شۇڭا a بىلەن b نىڭ ھەر ئىككىسى مەنپىي. ھاسىلات 28 چىقىدىغان بارلىق جۈپلەرنى تىزىڭ.
-1-28=-29 -2-14=-16 -4-7=-11
ھەر بىر جۈپنىڭ يىغىندىسىنى چىقىرىڭ.
a=-7 b=-4
-11 دېگەن يىغىندا چىقىدىغان جۈپ ئارقىلىق يېشىلىدۇ.
\left(x^{2}-7x\right)+\left(-4x+28\right)
x^{2}-11x+28 نى \left(x^{2}-7x\right)+\left(-4x+28\right) شەكلىدە قايتا يېزىڭ.
x\left(x-7\right)-4\left(x-7\right)
بىرىنچى گۇرۇپپىدىن x نى، ئىككىنچى گۇرۇپپىدىن -4 نى چىقىرىڭ.
\left(x-7\right)\left(x-4\right)
تارقىتىش قانۇنى بويىچە ئومۇمىي ئەزا x-7 نى چىقىرىڭ.
x=7 x=4
تەڭلىمىنى يېشىش ئۈچۈن x-7=0 بىلەن x-4=0 نى يېشىڭ.
x^{2}-11x=-28
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
x^{2}-11x-\left(-28\right)=-28-\left(-28\right)
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 28 نى قوشۇڭ.
x^{2}-11x-\left(-28\right)=0
-28 دىن ئۆزىنى ئالسىڭىز 0 قالىدۇ.
x^{2}-11x+28=0
0 دىن -28 نى ئېلىڭ.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 28}}{2}
بۇ تەڭلىمە ئۆلچەملىك شەكىلدە: ax^{2}+bx+c=0. كىۋادراتلىق فورمۇلا \frac{-b±\sqrt{b^{2}-4ac}}{2a} دا 1 نى a گە، -11 نى b گە ۋە 28 نى c گە ئالماشتۇرۇڭ.
x=\frac{-\left(-11\right)±\sqrt{121-4\times 28}}{2}
-11 نىڭ كىۋادراتىنى تېپىڭ.
x=\frac{-\left(-11\right)±\sqrt{121-112}}{2}
-4 نى 28 كە كۆپەيتىڭ.
x=\frac{-\left(-11\right)±\sqrt{9}}{2}
121 نى -112 گە قوشۇڭ.
x=\frac{-\left(-11\right)±3}{2}
9 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=\frac{11±3}{2}
-11 نىڭ قارشىسى 11 دۇر.
x=\frac{14}{2}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{11±3}{2} نى يېشىڭ. 11 نى 3 گە قوشۇڭ.
x=7
14 نى 2 كە بۆلۈڭ.
x=\frac{8}{2}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{11±3}{2} نى يېشىڭ. 11 دىن 3 نى ئېلىڭ.
x=4
8 نى 2 كە بۆلۈڭ.
x=7 x=4
تەڭلىمە يېشىلدى.
x^{2}-11x=-28
بۇنىڭغا ئوخشاش كىۋادراتلىق تەڭلىمىنى كىۋادراتقا كەلتۈرۈش ئارقىلىق يېشىشكە بولىدۇ. كىۋادراتقا كەلتۈرۈش ئۈچۈن تەڭلىمە x^{2}+bx=c دېگەن شەكىلدە بولۇشى كېرەك.
x^{2}-11x+\left(-\frac{11}{2}\right)^{2}=-28+\left(-\frac{11}{2}\right)^{2}
-11، يەنى x ئەزانىڭ كوئېففىتسېنتىنى 2 گە بۆلۈپ، -\frac{11}{2} نى چىقىرىڭ. ئاندىن تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە -\frac{11}{2} نىڭ كىۋادراتىنى قوشۇڭ. بۇ باسقۇچ ئارقىلىق تەڭلىمىنىڭ سول تەرىپى پۈتۈن سانلىق كىۋادراتقا ئايلىنىدۇ.
x^{2}-11x+\frac{121}{4}=-28+\frac{121}{4}
كەسىرنىڭ سۈرەت ۋە مەخرەجلىرىنىڭ كىۋادراتىنى تېپىش ئارقىلىق -\frac{11}{2} نىڭ كىۋادراتىنى تېپىڭ.
x^{2}-11x+\frac{121}{4}=\frac{9}{4}
-28 نى \frac{121}{4} گە قوشۇڭ.
\left(x-\frac{11}{2}\right)^{2}=\frac{9}{4}
كۆپەيتكۈچى x^{2}-11x+\frac{121}{4}. ئادەتتە x^{2}+bx+c پۈتۈن سانلىق كىۋادرات بولسا، ئۇنىڭ كۆپەيتكۈچىسى \left(x+\frac{b}{2}\right)^{2} بولىدۇ.
\sqrt{\left(x-\frac{11}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x-\frac{11}{2}=\frac{3}{2} x-\frac{11}{2}=-\frac{3}{2}
ئاددىيلاشتۇرۇڭ.
x=7 x=4
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{11}{2} نى قوشۇڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}