ئاساسىي مەزمۇنغا ئاتلاش
كۆپەيتكۈچى
Tick mark Image
ھېسابلاش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

a+b=-10 ab=1\left(-24\right)=-24
ئىپادىنى گۇرۇپپىلاپ كۆپەيتىڭ. ئاۋۋال ئىپادىنى x^{2}+ax+bx-24 دېگەن شەكىلدە قايتا يېزىش كېرەك. a ۋە b نى تېپىش ئۈچۈن يېشىدىغان سىستېما بېكىتىڭ.
1,-24 2,-12 3,-8 4,-6
ab مەنپىي، شۇڭا a بىلەن b نىڭ بەلگىسى قارىمۇقارشى. a+b مەنپىي، شۇڭا مەنپىي ساننىڭ مۇتلەق قىممىتى مۇسبەت ساننىڭكىدىن چوڭ. ھاسىلات -24 چىقىدىغان بارلىق جۈپلەرنى تىزىڭ.
1-24=-23 2-12=-10 3-8=-5 4-6=-2
ھەر بىر جۈپنىڭ يىغىندىسىنى چىقىرىڭ.
a=-12 b=2
-10 دېگەن يىغىندا چىقىدىغان جۈپ ئارقىلىق يېشىلىدۇ.
\left(x^{2}-12x\right)+\left(2x-24\right)
x^{2}-10x-24 نى \left(x^{2}-12x\right)+\left(2x-24\right) شەكلىدە قايتا يېزىڭ.
x\left(x-12\right)+2\left(x-12\right)
بىرىنچى گۇرۇپپىدىن x نى، ئىككىنچى گۇرۇپپىدىن 2 نى چىقىرىڭ.
\left(x-12\right)\left(x+2\right)
تارقىتىش قانۇنى بويىچە ئومۇمىي ئەزا x-12 نى چىقىرىڭ.
x^{2}-10x-24=0
x_{1} ۋە x_{2} كىۋادرات تەڭلىمە ax^{2}+bx+c=0 نىڭ يەشمىسى بولغاندا، كۋادراتلىق كۆپ ئەزالىقنى ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) گە ئۆزگەرتىپ يېشىشكە بولىدۇ.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\left(-24\right)}}{2}
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
x=\frac{-\left(-10\right)±\sqrt{100-4\left(-24\right)}}{2}
-10 نىڭ كىۋادراتىنى تېپىڭ.
x=\frac{-\left(-10\right)±\sqrt{100+96}}{2}
-4 نى -24 كە كۆپەيتىڭ.
x=\frac{-\left(-10\right)±\sqrt{196}}{2}
100 نى 96 گە قوشۇڭ.
x=\frac{-\left(-10\right)±14}{2}
196 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=\frac{10±14}{2}
-10 نىڭ قارشىسى 10 دۇر.
x=\frac{24}{2}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{10±14}{2} نى يېشىڭ. 10 نى 14 گە قوشۇڭ.
x=12
24 نى 2 كە بۆلۈڭ.
x=-\frac{4}{2}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{10±14}{2} نى يېشىڭ. 10 دىن 14 نى ئېلىڭ.
x=-2
-4 نى 2 كە بۆلۈڭ.
x^{2}-10x-24=\left(x-12\right)\left(x-\left(-2\right)\right)
ئەسلى ئىپادىنى ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ئارقىلىق يېشىڭ. 12 نى x_{1} گە ۋە -2 نى x_{2} گە ئالماشتۇرۇڭ.
x^{2}-10x-24=\left(x-12\right)\left(x+2\right)
بارلىق ئىپادىنى p-\left(-q\right) دىن p+q گە ئاددىيلاشتۇرۇڭ.