x ^ { 2 } ( 1 - x + y ) + x - x d y = 0
d نى يېشىش (complex solution)
\left\{\begin{matrix}d=\frac{1+x+xy-x^{2}}{y}\text{, }&y\neq 0\\d\in \mathrm{C}\text{, }&x=0\text{ or }\left(x=\frac{1-\sqrt{5}}{2}\text{ and }y=0\right)\text{ or }\left(x=\frac{\sqrt{5}+1}{2}\text{ and }y=0\right)\end{matrix}\right.
d نى يېشىش
\left\{\begin{matrix}d=\frac{1+x+xy-x^{2}}{y}\text{, }&y\neq 0\\d\in \mathrm{R}\text{, }&x=0\text{ or }\left(x=\frac{1-\sqrt{5}}{2}\text{ and }y=0\right)\text{ or }\left(x=\frac{\sqrt{5}+1}{2}\text{ and }y=0\right)\end{matrix}\right.
x نى يېشىش (complex solution)
x=\frac{\sqrt{y^{2}-4dy+2y+5}+y+1}{2}
x=0
x=\frac{-\sqrt{y^{2}-4dy+2y+5}+y+1}{2}
x نى يېشىش
\left\{\begin{matrix}\\x=0\text{, }&\text{unconditionally}\\x=\frac{-\sqrt{y^{2}-4dy+2y+5}+y+1}{2}\text{; }x=\frac{\sqrt{y^{2}-4dy+2y+5}+y+1}{2}\text{, }&\left(d>\frac{1-\sqrt{5}}{2}\text{ and }d<\frac{\sqrt{5}+1}{2}\right)\text{ or }y\geq \sqrt{\left(1-2d\right)^{2}-5}+2d-1\text{ or }y\leq -\sqrt{\left(1-2d\right)^{2}-5}+2d-1\text{ or }\left(d\geq \frac{1-\sqrt{5}}{2}\text{ and }d\leq \frac{\sqrt{5}+1}{2}\right)\end{matrix}\right.
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
x^{2}-x^{3}+x^{2}y+x-xdy=0
تارقىتىش قانۇنى بويىچە x^{2} نى 1-x+y گە كۆپەيتىڭ.
-x^{3}+x^{2}y+x-xdy=-x^{2}
ھەر ئىككى تەرەپتىن x^{2} نى ئېلىڭ. نۆلدىن ھەرقانداق سان ئېلىنسا، شۇ ساننىڭ مەنپىيسى چىقىدۇ.
x^{2}y+x-xdy=-x^{2}+x^{3}
x^{3} نى ھەر ئىككى تەرەپكە قوشۇڭ.
x-xdy=-x^{2}+x^{3}-x^{2}y
ھەر ئىككى تەرەپتىن x^{2}y نى ئېلىڭ.
-xdy=-x^{2}+x^{3}-x^{2}y-x
ھەر ئىككى تەرەپتىن x نى ئېلىڭ.
\left(-xy\right)d=x^{3}-x^{2}-x-yx^{2}
تەڭلىمە ئۆلچەملىك بولدى.
\frac{\left(-xy\right)d}{-xy}=\frac{x\left(x^{2}-xy-x-1\right)}{-xy}
ھەر ئىككى تەرەپنى -xy گە بۆلۈڭ.
d=\frac{x\left(x^{2}-xy-x-1\right)}{-xy}
-xy گە بۆلگەندە -xy گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
d=\frac{1+x-x^{2}}{y}+x
x\left(-x+x^{2}-xy-1\right) نى -xy كە بۆلۈڭ.
x^{2}-x^{3}+x^{2}y+x-xdy=0
تارقىتىش قانۇنى بويىچە x^{2} نى 1-x+y گە كۆپەيتىڭ.
-x^{3}+x^{2}y+x-xdy=-x^{2}
ھەر ئىككى تەرەپتىن x^{2} نى ئېلىڭ. نۆلدىن ھەرقانداق سان ئېلىنسا، شۇ ساننىڭ مەنپىيسى چىقىدۇ.
x^{2}y+x-xdy=-x^{2}+x^{3}
x^{3} نى ھەر ئىككى تەرەپكە قوشۇڭ.
x-xdy=-x^{2}+x^{3}-x^{2}y
ھەر ئىككى تەرەپتىن x^{2}y نى ئېلىڭ.
-xdy=-x^{2}+x^{3}-x^{2}y-x
ھەر ئىككى تەرەپتىن x نى ئېلىڭ.
\left(-xy\right)d=x^{3}-x^{2}-x-yx^{2}
تەڭلىمە ئۆلچەملىك بولدى.
\frac{\left(-xy\right)d}{-xy}=\frac{x\left(x^{2}-xy-x-1\right)}{-xy}
ھەر ئىككى تەرەپنى -xy گە بۆلۈڭ.
d=\frac{x\left(x^{2}-xy-x-1\right)}{-xy}
-xy گە بۆلگەندە -xy گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
d=\frac{1+x-x^{2}}{y}+x
x\left(-x+x^{2}-xy-1\right) نى -xy كە بۆلۈڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}