ئاساسىي مەزمۇنغا ئاتلاش
x نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

4x^{2}=4x+1
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى 4 گە كۆپەيتىڭ.
4x^{2}-4x=1
ھەر ئىككى تەرەپتىن 4x نى ئېلىڭ.
4x^{2}-4x-1=0
ھەر ئىككى تەرەپتىن 1 نى ئېلىڭ.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 4\left(-1\right)}}{2\times 4}
بۇ تەڭلىمە ئۆلچەملىك شەكىلدە: ax^{2}+bx+c=0. كىۋادراتلىق فورمۇلا \frac{-b±\sqrt{b^{2}-4ac}}{2a} دا 4 نى a گە، -4 نى b گە ۋە -1 نى c گە ئالماشتۇرۇڭ.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 4\left(-1\right)}}{2\times 4}
-4 نىڭ كىۋادراتىنى تېپىڭ.
x=\frac{-\left(-4\right)±\sqrt{16-16\left(-1\right)}}{2\times 4}
-4 نى 4 كە كۆپەيتىڭ.
x=\frac{-\left(-4\right)±\sqrt{16+16}}{2\times 4}
-16 نى -1 كە كۆپەيتىڭ.
x=\frac{-\left(-4\right)±\sqrt{32}}{2\times 4}
16 نى 16 گە قوشۇڭ.
x=\frac{-\left(-4\right)±4\sqrt{2}}{2\times 4}
32 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=\frac{4±4\sqrt{2}}{2\times 4}
-4 نىڭ قارشىسى 4 دۇر.
x=\frac{4±4\sqrt{2}}{8}
2 نى 4 كە كۆپەيتىڭ.
x=\frac{4\sqrt{2}+4}{8}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{4±4\sqrt{2}}{8} نى يېشىڭ. 4 نى 4\sqrt{2} گە قوشۇڭ.
x=\frac{\sqrt{2}+1}{2}
4+4\sqrt{2} نى 8 كە بۆلۈڭ.
x=\frac{4-4\sqrt{2}}{8}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{4±4\sqrt{2}}{8} نى يېشىڭ. 4 دىن 4\sqrt{2} نى ئېلىڭ.
x=\frac{1-\sqrt{2}}{2}
4-4\sqrt{2} نى 8 كە بۆلۈڭ.
x=\frac{\sqrt{2}+1}{2} x=\frac{1-\sqrt{2}}{2}
تەڭلىمە يېشىلدى.
4x^{2}=4x+1
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى 4 گە كۆپەيتىڭ.
4x^{2}-4x=1
ھەر ئىككى تەرەپتىن 4x نى ئېلىڭ.
\frac{4x^{2}-4x}{4}=\frac{1}{4}
ھەر ئىككى تەرەپنى 4 گە بۆلۈڭ.
x^{2}+\left(-\frac{4}{4}\right)x=\frac{1}{4}
4 گە بۆلگەندە 4 گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
x^{2}-x=\frac{1}{4}
-4 نى 4 كە بۆلۈڭ.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=\frac{1}{4}+\left(-\frac{1}{2}\right)^{2}
-1، يەنى x ئەزانىڭ كوئېففىتسېنتىنى 2 گە بۆلۈپ، -\frac{1}{2} نى چىقىرىڭ. ئاندىن تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە -\frac{1}{2} نىڭ كىۋادراتىنى قوشۇڭ. بۇ باسقۇچ ئارقىلىق تەڭلىمىنىڭ سول تەرىپى پۈتۈن سانلىق كىۋادراتقا ئايلىنىدۇ.
x^{2}-x+\frac{1}{4}=\frac{1+1}{4}
كەسىرنىڭ سۈرەت ۋە مەخرەجلىرىنىڭ كىۋادراتىنى تېپىش ئارقىلىق -\frac{1}{2} نىڭ كىۋادراتىنى تېپىڭ.
x^{2}-x+\frac{1}{4}=\frac{1}{2}
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{1}{4} نى \frac{1}{4} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
\left(x-\frac{1}{2}\right)^{2}=\frac{1}{2}
كۆپەيتكۈچى x^{2}-x+\frac{1}{4}. ئادەتتە x^{2}+bx+c پۈتۈن سانلىق كىۋادرات بولسا، ئۇنىڭ كۆپەيتكۈچىسى ھەردائىم \left(x+\frac{b}{2}\right)^{2} بولىدۇ.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{1}{2}}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x-\frac{1}{2}=\frac{\sqrt{2}}{2} x-\frac{1}{2}=-\frac{\sqrt{2}}{2}
ئاددىيلاشتۇرۇڭ.
x=\frac{\sqrt{2}+1}{2} x=\frac{1-\sqrt{2}}{2}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{1}{2} نى قوشۇڭ.