ئاساسىي مەزمۇنغا ئاتلاش
x نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

a+b=1 ab=-56
تەڭلىمىنى يېشىش ئۈچۈن x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) دېگەن فورمۇلا ئارقىلىق x^{2}+x-56 نى ھېسابلاڭ. a ۋە b نى تېپىش ئۈچۈن يېشىدىغان سىستېما بېكىتىڭ.
-1,56 -2,28 -4,14 -7,8
ab مەنپىي، شۇڭا a بىلەن b نىڭ بەلگىسى قارىمۇقارشى. a+b مۇسبەت، شۇڭا مۇسبەت ساننىڭ مۇتلەق قىممىتى مەنپىي ساننىڭكىدىن چوڭ. ھاسىلات -56 چىقىدىغان بارلىق جۈپلەرنى تىزىڭ.
-1+56=55 -2+28=26 -4+14=10 -7+8=1
ھەر بىر جۈپنىڭ يىغىندىسىنى چىقىرىڭ.
a=-7 b=8
1 دېگەن يىغىندا چىقىدىغان جۈپ ئارقىلىق يېشىلىدۇ.
\left(x-7\right)\left(x+8\right)
كۆپەيتكەن \left(x+a\right)\left(x+b\right) دېگەن ئىپادىنى تاپقان قىممەت ئارقىلىق قايتا يېزىڭ.
x=7 x=-8
تەڭلىمىنى يېشىش ئۈچۈن x-7=0 بىلەن x+8=0 نى يېشىڭ.
a+b=1 ab=1\left(-56\right)=-56
تەڭلىمىنى يېشىش ئۈچۈن گۇرۇپپىلاش ئارقىلىق سول تەرەپنى كۆپەيتىپ چىقىرىڭ. ئاۋۋال سول تەرەپنى x^{2}+ax+bx-56 شەكلىدە يېزىش كېرەك. a ۋە b نى تېپىش ئۈچۈن يېشىدىغان سىستېما بېكىتىڭ.
-1,56 -2,28 -4,14 -7,8
ab مەنپىي، شۇڭا a بىلەن b نىڭ بەلگىسى قارىمۇقارشى. a+b مۇسبەت، شۇڭا مۇسبەت ساننىڭ مۇتلەق قىممىتى مەنپىي ساننىڭكىدىن چوڭ. ھاسىلات -56 چىقىدىغان بارلىق جۈپلەرنى تىزىڭ.
-1+56=55 -2+28=26 -4+14=10 -7+8=1
ھەر بىر جۈپنىڭ يىغىندىسىنى چىقىرىڭ.
a=-7 b=8
1 دېگەن يىغىندا چىقىدىغان جۈپ ئارقىلىق يېشىلىدۇ.
\left(x^{2}-7x\right)+\left(8x-56\right)
x^{2}+x-56 نى \left(x^{2}-7x\right)+\left(8x-56\right) شەكلىدە قايتا يېزىڭ.
x\left(x-7\right)+8\left(x-7\right)
بىرىنچى گۇرۇپپىدىن x نى، ئىككىنچى گۇرۇپپىدىن 8 نى چىقىرىڭ.
\left(x-7\right)\left(x+8\right)
تارقىتىش قانۇنى بويىچە ئومۇمىي ئەزا x-7 نى چىقىرىڭ.
x=7 x=-8
تەڭلىمىنى يېشىش ئۈچۈن x-7=0 بىلەن x+8=0 نى يېشىڭ.
x^{2}+x-56=0
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
x=\frac{-1±\sqrt{1^{2}-4\left(-56\right)}}{2}
بۇ تەڭلىمە ئۆلچەملىك شەكىلدە: ax^{2}+bx+c=0. كىۋادراتلىق فورمۇلا \frac{-b±\sqrt{b^{2}-4ac}}{2a} دا 1 نى a گە، 1 نى b گە ۋە -56 نى c گە ئالماشتۇرۇڭ.
x=\frac{-1±\sqrt{1-4\left(-56\right)}}{2}
1 نىڭ كىۋادراتىنى تېپىڭ.
x=\frac{-1±\sqrt{1+224}}{2}
-4 نى -56 كە كۆپەيتىڭ.
x=\frac{-1±\sqrt{225}}{2}
1 نى 224 گە قوشۇڭ.
x=\frac{-1±15}{2}
225 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=\frac{14}{2}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{-1±15}{2} نى يېشىڭ. -1 نى 15 گە قوشۇڭ.
x=7
14 نى 2 كە بۆلۈڭ.
x=-\frac{16}{2}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{-1±15}{2} نى يېشىڭ. -1 دىن 15 نى ئېلىڭ.
x=-8
-16 نى 2 كە بۆلۈڭ.
x=7 x=-8
تەڭلىمە يېشىلدى.
x^{2}+x-56=0
بۇنىڭغا ئوخشاش كىۋادراتلىق تەڭلىمىنى كىۋادراتقا كەلتۈرۈش ئارقىلىق يېشىشكە بولىدۇ. كىۋادراتقا كەلتۈرۈش ئۈچۈن تەڭلىمە x^{2}+bx=c دېگەن شەكىلدە بولۇشى كېرەك.
x^{2}+x-56-\left(-56\right)=-\left(-56\right)
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 56 نى قوشۇڭ.
x^{2}+x=-\left(-56\right)
-56 دىن ئۆزىنى ئالسىڭىز 0 قالىدۇ.
x^{2}+x=56
0 دىن -56 نى ئېلىڭ.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=56+\left(\frac{1}{2}\right)^{2}
1، يەنى x ئەزانىڭ كوئېففىتسېنتىنى 2 گە بۆلۈپ، \frac{1}{2} نى چىقىرىڭ. ئاندىن تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{1}{2} نىڭ كىۋادراتىنى قوشۇڭ. بۇ باسقۇچ ئارقىلىق تەڭلىمىنىڭ سول تەرىپى پۈتۈن سانلىق كىۋادراتقا ئايلىنىدۇ.
x^{2}+x+\frac{1}{4}=56+\frac{1}{4}
كەسىرنىڭ سۈرەت ۋە مەخرەجلىرىنىڭ كىۋادراتىنى تېپىش ئارقىلىق \frac{1}{2} نىڭ كىۋادراتىنى تېپىڭ.
x^{2}+x+\frac{1}{4}=\frac{225}{4}
56 نى \frac{1}{4} گە قوشۇڭ.
\left(x+\frac{1}{2}\right)^{2}=\frac{225}{4}
كۆپەيتكۈچى x^{2}+x+\frac{1}{4}. ئادەتتە x^{2}+bx+c پۈتۈن سانلىق كىۋادرات بولسا، ئۇنىڭ كۆپەيتكۈچىسى ھەردائىم \left(x+\frac{b}{2}\right)^{2} بولىدۇ.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{225}{4}}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x+\frac{1}{2}=\frac{15}{2} x+\frac{1}{2}=-\frac{15}{2}
ئاددىيلاشتۇرۇڭ.
x=7 x=-8
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{1}{2} نى ئېلىڭ.