ئاساسىي مەزمۇنغا ئاتلاش
x نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

2x^{2}-11x-60=0\times 8
x^{2} بىلەن x^{2} نى بىرىكتۈرۈپ 2x^{2} نى چىقىرىڭ.
2x^{2}-11x-60=0
0 گە 8 نى كۆپەيتىپ 0 نى چىقىرىڭ.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 2\left(-60\right)}}{2\times 2}
بۇ تەڭلىمە ئۆلچەملىك شەكىلدە: ax^{2}+bx+c=0. كىۋادراتلىق فورمۇلا \frac{-b±\sqrt{b^{2}-4ac}}{2a} دا 2 نى a گە، -11 نى b گە ۋە -60 نى c گە ئالماشتۇرۇڭ.
x=\frac{-\left(-11\right)±\sqrt{121-4\times 2\left(-60\right)}}{2\times 2}
-11 نىڭ كىۋادراتىنى تېپىڭ.
x=\frac{-\left(-11\right)±\sqrt{121-8\left(-60\right)}}{2\times 2}
-4 نى 2 كە كۆپەيتىڭ.
x=\frac{-\left(-11\right)±\sqrt{121+480}}{2\times 2}
-8 نى -60 كە كۆپەيتىڭ.
x=\frac{-\left(-11\right)±\sqrt{601}}{2\times 2}
121 نى 480 گە قوشۇڭ.
x=\frac{11±\sqrt{601}}{2\times 2}
-11 نىڭ قارشىسى 11 دۇر.
x=\frac{11±\sqrt{601}}{4}
2 نى 2 كە كۆپەيتىڭ.
x=\frac{\sqrt{601}+11}{4}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{11±\sqrt{601}}{4} نى يېشىڭ. 11 نى \sqrt{601} گە قوشۇڭ.
x=\frac{11-\sqrt{601}}{4}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{11±\sqrt{601}}{4} نى يېشىڭ. 11 دىن \sqrt{601} نى ئېلىڭ.
x=\frac{\sqrt{601}+11}{4} x=\frac{11-\sqrt{601}}{4}
تەڭلىمە يېشىلدى.
2x^{2}-11x-60=0\times 8
x^{2} بىلەن x^{2} نى بىرىكتۈرۈپ 2x^{2} نى چىقىرىڭ.
2x^{2}-11x-60=0
0 گە 8 نى كۆپەيتىپ 0 نى چىقىرىڭ.
2x^{2}-11x=60
60 نى ھەر ئىككى تەرەپكە قوشۇڭ. ھەرقانداق سانغا نۆل قوشۇلسا نەتىجە شۇ ساننىڭ ئۆزىدۇر.
\frac{2x^{2}-11x}{2}=\frac{60}{2}
ھەر ئىككى تەرەپنى 2 گە بۆلۈڭ.
x^{2}-\frac{11}{2}x=\frac{60}{2}
2 گە بۆلگەندە 2 گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
x^{2}-\frac{11}{2}x=30
60 نى 2 كە بۆلۈڭ.
x^{2}-\frac{11}{2}x+\left(-\frac{11}{4}\right)^{2}=30+\left(-\frac{11}{4}\right)^{2}
-\frac{11}{2}، يەنى x ئەزانىڭ كوئېففىتسېنتىنى 2 گە بۆلۈپ، -\frac{11}{4} نى چىقىرىڭ. ئاندىن تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە -\frac{11}{4} نىڭ كىۋادراتىنى قوشۇڭ. بۇ باسقۇچ ئارقىلىق تەڭلىمىنىڭ سول تەرىپى پۈتۈن سانلىق كىۋادراتقا ئايلىنىدۇ.
x^{2}-\frac{11}{2}x+\frac{121}{16}=30+\frac{121}{16}
كەسىرنىڭ سۈرەت ۋە مەخرەجلىرىنىڭ كىۋادراتىنى تېپىش ئارقىلىق -\frac{11}{4} نىڭ كىۋادراتىنى تېپىڭ.
x^{2}-\frac{11}{2}x+\frac{121}{16}=\frac{601}{16}
30 نى \frac{121}{16} گە قوشۇڭ.
\left(x-\frac{11}{4}\right)^{2}=\frac{601}{16}
كۆپەيتكۈچى x^{2}-\frac{11}{2}x+\frac{121}{16}. ئادەتتە x^{2}+bx+c پۈتۈن سانلىق كىۋادرات بولسا، ئۇنىڭ كۆپەيتكۈچىسى ھەردائىم \left(x+\frac{b}{2}\right)^{2} بولىدۇ.
\sqrt{\left(x-\frac{11}{4}\right)^{2}}=\sqrt{\frac{601}{16}}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x-\frac{11}{4}=\frac{\sqrt{601}}{4} x-\frac{11}{4}=-\frac{\sqrt{601}}{4}
ئاددىيلاشتۇرۇڭ.
x=\frac{\sqrt{601}+11}{4} x=\frac{11-\sqrt{601}}{4}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{11}{4} نى قوشۇڭ.