x نى يېشىش
x=-4
x=-2
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
x^{2}+8+6x=0
6x نى ھەر ئىككى تەرەپكە قوشۇڭ.
x^{2}+6x+8=0
كۆپ ئەزالىقنى ئۆلچەملىك شەكىلدە رەتلەڭ. ئەزالارنى چوڭدىن كىچىككە تىزىڭ.
a+b=6 ab=8
تەڭلىمىنى يېشىش ئۈچۈن x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) دېگەن فورمۇلا ئارقىلىق x^{2}+6x+8 نى ھېسابلاڭ. a ۋە b نى تېپىش ئۈچۈن يېشىدىغان سىستېما بېكىتىڭ.
1,8 2,4
ab مۇسبەت، شۇڭا a بىلەن b نىڭ بەلگىسى ئوخشاش a+b مۇسبەت، شۇڭا a بىلەن b نىڭ ھەر ئىككىسى مۇسبەت. ھاسىلات 8 چىقىدىغان بارلىق جۈپلەرنى تىزىڭ.
1+8=9 2+4=6
ھەر بىر جۈپنىڭ يىغىندىسىنى چىقىرىڭ.
a=2 b=4
6 دېگەن يىغىندا چىقىدىغان جۈپ ئارقىلىق يېشىلىدۇ.
\left(x+2\right)\left(x+4\right)
كۆپەيتكەن \left(x+a\right)\left(x+b\right) دېگەن ئىپادىنى تاپقان قىممەت ئارقىلىق قايتا يېزىڭ.
x=-2 x=-4
تەڭلىمىنى يېشىش ئۈچۈن x+2=0 بىلەن x+4=0 نى يېشىڭ.
x^{2}+8+6x=0
6x نى ھەر ئىككى تەرەپكە قوشۇڭ.
x^{2}+6x+8=0
كۆپ ئەزالىقنى ئۆلچەملىك شەكىلدە رەتلەڭ. ئەزالارنى چوڭدىن كىچىككە تىزىڭ.
a+b=6 ab=1\times 8=8
تەڭلىمىنى يېشىش ئۈچۈن گۇرۇپپىلاش ئارقىلىق سول تەرەپنى كۆپەيتىپ چىقىرىڭ. ئاۋۋال سول تەرەپنى x^{2}+ax+bx+8 شەكلىدە يېزىش كېرەك. a ۋە b نى تېپىش ئۈچۈن يېشىدىغان سىستېما بېكىتىڭ.
1,8 2,4
ab مۇسبەت، شۇڭا a بىلەن b نىڭ بەلگىسى ئوخشاش a+b مۇسبەت، شۇڭا a بىلەن b نىڭ ھەر ئىككىسى مۇسبەت. ھاسىلات 8 چىقىدىغان بارلىق جۈپلەرنى تىزىڭ.
1+8=9 2+4=6
ھەر بىر جۈپنىڭ يىغىندىسىنى چىقىرىڭ.
a=2 b=4
6 دېگەن يىغىندا چىقىدىغان جۈپ ئارقىلىق يېشىلىدۇ.
\left(x^{2}+2x\right)+\left(4x+8\right)
x^{2}+6x+8 نى \left(x^{2}+2x\right)+\left(4x+8\right) شەكلىدە قايتا يېزىڭ.
x\left(x+2\right)+4\left(x+2\right)
بىرىنچى گۇرۇپپىدىن x نى، ئىككىنچى گۇرۇپپىدىن 4 نى چىقىرىڭ.
\left(x+2\right)\left(x+4\right)
تارقىتىش قانۇنى بويىچە ئومۇمىي ئەزا x+2 نى چىقىرىڭ.
x=-2 x=-4
تەڭلىمىنى يېشىش ئۈچۈن x+2=0 بىلەن x+4=0 نى يېشىڭ.
x^{2}+8+6x=0
6x نى ھەر ئىككى تەرەپكە قوشۇڭ.
x^{2}+6x+8=0
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
x=\frac{-6±\sqrt{6^{2}-4\times 8}}{2}
بۇ تەڭلىمە ئۆلچەملىك شەكىلدە: ax^{2}+bx+c=0. كىۋادراتلىق فورمۇلا \frac{-b±\sqrt{b^{2}-4ac}}{2a} دا 1 نى a گە، 6 نى b گە ۋە 8 نى c گە ئالماشتۇرۇڭ.
x=\frac{-6±\sqrt{36-4\times 8}}{2}
6 نىڭ كىۋادراتىنى تېپىڭ.
x=\frac{-6±\sqrt{36-32}}{2}
-4 نى 8 كە كۆپەيتىڭ.
x=\frac{-6±\sqrt{4}}{2}
36 نى -32 گە قوشۇڭ.
x=\frac{-6±2}{2}
4 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=-\frac{4}{2}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{-6±2}{2} نى يېشىڭ. -6 نى 2 گە قوشۇڭ.
x=-2
-4 نى 2 كە بۆلۈڭ.
x=-\frac{8}{2}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{-6±2}{2} نى يېشىڭ. -6 دىن 2 نى ئېلىڭ.
x=-4
-8 نى 2 كە بۆلۈڭ.
x=-2 x=-4
تەڭلىمە يېشىلدى.
x^{2}+8+6x=0
6x نى ھەر ئىككى تەرەپكە قوشۇڭ.
x^{2}+6x=-8
ھەر ئىككى تەرەپتىن 8 نى ئېلىڭ. نۆلدىن ھەرقانداق سان ئېلىنسا، شۇ ساننىڭ مەنپىيسى چىقىدۇ.
x^{2}+6x+3^{2}=-8+3^{2}
6، يەنى x ئەزانىڭ كوئېففىتسېنتىنى 2 گە بۆلۈپ، 3 نى چىقىرىڭ. ئاندىن تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 3 نىڭ كىۋادراتىنى قوشۇڭ. بۇ باسقۇچ ئارقىلىق تەڭلىمىنىڭ سول تەرىپى پۈتۈن سانلىق كىۋادراتقا ئايلىنىدۇ.
x^{2}+6x+9=-8+9
3 نىڭ كىۋادراتىنى تېپىڭ.
x^{2}+6x+9=1
-8 نى 9 گە قوشۇڭ.
\left(x+3\right)^{2}=1
كۆپەيتكۈچى x^{2}+6x+9. ئادەتتە x^{2}+bx+c پۈتۈن سانلىق كىۋادرات بولسا، ئۇنىڭ كۆپەيتكۈچىسى ھەردائىم \left(x+\frac{b}{2}\right)^{2} بولىدۇ.
\sqrt{\left(x+3\right)^{2}}=\sqrt{1}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x+3=1 x+3=-1
ئاددىيلاشتۇرۇڭ.
x=-2 x=-4
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 3 نى ئېلىڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}