ئاساسىي مەزمۇنغا ئاتلاش
كۆپەيتكۈچى
Tick mark Image
ھېسابلاش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

a+b=6 ab=1\times 9=9
ئىپادىنى گۇرۇپپىلاپ كۆپەيتىڭ. ئاۋۋال ئىپادىنى x^{2}+ax+bx+9 دېگەن شەكىلدە قايتا يېزىش كېرەك. a ۋە b نى تېپىش ئۈچۈن يېشىدىغان سىستېما بېكىتىڭ.
1,9 3,3
ab مۇسبەت، شۇڭا a بىلەن b نىڭ بەلگىسى ئوخشاش a+b مۇسبەت، شۇڭا a بىلەن b نىڭ ھەر ئىككىسى مۇسبەت. ھاسىلات 9 چىقىدىغان بارلىق جۈپلەرنى تىزىڭ.
1+9=10 3+3=6
ھەر بىر جۈپنىڭ يىغىندىسىنى چىقىرىڭ.
a=3 b=3
6 دېگەن يىغىندا چىقىدىغان جۈپ ئارقىلىق يېشىلىدۇ.
\left(x^{2}+3x\right)+\left(3x+9\right)
x^{2}+6x+9 نى \left(x^{2}+3x\right)+\left(3x+9\right) شەكلىدە قايتا يېزىڭ.
x\left(x+3\right)+3\left(x+3\right)
بىرىنچى گۇرۇپپىدىن x نى، ئىككىنچى گۇرۇپپىدىن 3 نى چىقىرىڭ.
\left(x+3\right)\left(x+3\right)
تارقىتىش قانۇنى بويىچە ئومۇمىي ئەزا x+3 نى چىقىرىڭ.
\left(x+3\right)^{2}
ئىككى ئەزالىق كىۋادرات شەكلىدە قايتا يېزىڭ.
factor(x^{2}+6x+9)
ئۈچ ئەزالىق ئۈچ ئەزالىق كىۋادرات شەكلىدە بولۇپ، بىر ئومۇمىي بۆلگۈچى ئارقىلىق كۆپەيتىلىشى مۇمكىن. باش ۋە ئاياغ ئەزالارنىڭ كىۋادرات يىلتىزىنى تېپىش ئارقىلىق ئۈچ ئەزالىق كىۋادراتنىڭ كۆپەيتكۈچىسىنى تېپىشقا بولىدۇ.
\sqrt{9}=3
ئاياغ ئەزا 9 نىڭ كىۋادرات يىلتىزىنى تېپىڭ.
\left(x+3\right)^{2}
ئۈچ ئەزالىق كىۋادرات باش ۋە ئاياغ ئەزالارنىڭ كىۋادرات يىلتىزىنىڭ يىغىندىسى ياكى ئايرىمىسى بولغان ئىككى ئەزالىق كىۋادراتتۇر.
x^{2}+6x+9=0
x_{1} ۋە x_{2} كىۋادرات تەڭلىمە ax^{2}+bx+c=0 نىڭ يەشمىسى بولغاندا، كۋادراتلىق كۆپ ئەزالىقنى ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) گە ئۆزگەرتىپ يېشىشكە بولىدۇ.
x=\frac{-6±\sqrt{6^{2}-4\times 9}}{2}
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
x=\frac{-6±\sqrt{36-4\times 9}}{2}
6 نىڭ كىۋادراتىنى تېپىڭ.
x=\frac{-6±\sqrt{36-36}}{2}
-4 نى 9 كە كۆپەيتىڭ.
x=\frac{-6±\sqrt{0}}{2}
36 نى -36 گە قوشۇڭ.
x=\frac{-6±0}{2}
0 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x^{2}+6x+9=\left(x-\left(-3\right)\right)\left(x-\left(-3\right)\right)
ئەسلى ئىپادىنى ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ئارقىلىق يېشىڭ. -3 نى x_{1} گە ۋە -3 نى x_{2} گە ئالماشتۇرۇڭ.
x^{2}+6x+9=\left(x+3\right)\left(x+3\right)
بارلىق ئىپادىنى p-\left(-q\right) دىن p+q گە ئاددىيلاشتۇرۇڭ.