ئاساسىي مەزمۇنغا ئاتلاش
x نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

x^{2}+5x-6=0
تەڭسىزلىكنى يېشىش ئۈچۈن سول تەرەپنى كۆپەيتىڭ. x_{1} ۋە x_{2} كىۋادرات تەڭلىمە ax^{2}+bx+c=0 نىڭ يەشمىسى بولغاندا، كۋادراتلىق كۆپ ئەزالىقنى ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) گە ئۆزگەرتىپ يېشىشكە بولىدۇ.
x=\frac{-5±\sqrt{5^{2}-4\times 1\left(-6\right)}}{2}
ax^{2}+bx+c=0 شەكلىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادراتلىق فورمۇلا ئارقىلىق يېشىشكە بولىدۇ. كىۋادراتلىق فورمۇلادىكى 1 نى a گە، 5 نى b گە ۋە -6 نى c گە ئالماشتۇرۇڭ.
x=\frac{-5±7}{2}
ھېسابلاڭ.
x=1 x=-6
x=\frac{-5±7}{2} دېگەن تەڭلىمىنى ± پىلۇس ۋە ± مىنۇس بولغان ئەھۋاللار ئۈچۈن يېشىڭ.
\left(x-1\right)\left(x+6\right)\geq 0
ئېرىشكەن يېشىش ئۇسۇلى ئارقىلىق تەڭسىزلىكنى قايتا يېزىڭ.
x-1\leq 0 x+6\leq 0
ھاسىلاتنىڭ ≥0 بولۇشى ئۈچۈن x-1 ۋە x+6 نىڭ ھەر ئىككىسى ≤0 ياكى ھەر ئىككىسى ≥0 بولۇشى كېرەك. x-1 بىلەن x+6 نىڭ ھەر ئىككىسى ≤0 بولغان ئەھۋالنى ئويلىشىڭ.
x\leq -6
ھەر ئىككى تەڭسىزلىكنى قانائەتلەندۈرىدىغان يېشىم x\leq -6 دۇر.
x+6\geq 0 x-1\geq 0
x-1 بىلەن x+6 نىڭ ھەر ئىككىسى ≥0 بولغان ئەھۋالنى ئويلىشىڭ.
x\geq 1
ھەر ئىككى تەڭسىزلىكنى قانائەتلەندۈرىدىغان يېشىم x\geq 1 دۇر.
x\leq -6\text{; }x\geq 1
ئاخىرقى يېشىم ئېرىشكەن يېشىملەرنىڭ بىرىكمىسىدۇر.