ئاساسىي مەزمۇنغا ئاتلاش
x نى يېشىش (complex solution)
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

3x^{2}+5x+6=0
x^{2} بىلەن 2x^{2} نى بىرىكتۈرۈپ 3x^{2} نى چىقىرىڭ.
x=\frac{-5±\sqrt{5^{2}-4\times 3\times 6}}{2\times 3}
بۇ تەڭلىمە ئۆلچەملىك شەكىلدە: ax^{2}+bx+c=0. كىۋادراتلىق فورمۇلا \frac{-b±\sqrt{b^{2}-4ac}}{2a} دا 3 نى a گە، 5 نى b گە ۋە 6 نى c گە ئالماشتۇرۇڭ.
x=\frac{-5±\sqrt{25-4\times 3\times 6}}{2\times 3}
5 نىڭ كىۋادراتىنى تېپىڭ.
x=\frac{-5±\sqrt{25-12\times 6}}{2\times 3}
-4 نى 3 كە كۆپەيتىڭ.
x=\frac{-5±\sqrt{25-72}}{2\times 3}
-12 نى 6 كە كۆپەيتىڭ.
x=\frac{-5±\sqrt{-47}}{2\times 3}
25 نى -72 گە قوشۇڭ.
x=\frac{-5±\sqrt{47}i}{2\times 3}
-47 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=\frac{-5±\sqrt{47}i}{6}
2 نى 3 كە كۆپەيتىڭ.
x=\frac{-5+\sqrt{47}i}{6}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{-5±\sqrt{47}i}{6} نى يېشىڭ. -5 نى i\sqrt{47} گە قوشۇڭ.
x=\frac{-\sqrt{47}i-5}{6}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{-5±\sqrt{47}i}{6} نى يېشىڭ. -5 دىن i\sqrt{47} نى ئېلىڭ.
x=\frac{-5+\sqrt{47}i}{6} x=\frac{-\sqrt{47}i-5}{6}
تەڭلىمە يېشىلدى.
3x^{2}+5x+6=0
x^{2} بىلەن 2x^{2} نى بىرىكتۈرۈپ 3x^{2} نى چىقىرىڭ.
3x^{2}+5x=-6
ھەر ئىككى تەرەپتىن 6 نى ئېلىڭ. نۆلدىن ھەرقانداق سان ئېلىنسا، شۇ ساننىڭ مەنپىيسى چىقىدۇ.
\frac{3x^{2}+5x}{3}=-\frac{6}{3}
ھەر ئىككى تەرەپنى 3 گە بۆلۈڭ.
x^{2}+\frac{5}{3}x=-\frac{6}{3}
3 گە بۆلگەندە 3 گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
x^{2}+\frac{5}{3}x=-2
-6 نى 3 كە بۆلۈڭ.
x^{2}+\frac{5}{3}x+\left(\frac{5}{6}\right)^{2}=-2+\left(\frac{5}{6}\right)^{2}
\frac{5}{3}، يەنى x ئەزانىڭ كوئېففىتسېنتىنى 2 گە بۆلۈپ، \frac{5}{6} نى چىقىرىڭ. ئاندىن تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{5}{6} نىڭ كىۋادراتىنى قوشۇڭ. بۇ باسقۇچ ئارقىلىق تەڭلىمىنىڭ سول تەرىپى پۈتۈن سانلىق كىۋادراتقا ئايلىنىدۇ.
x^{2}+\frac{5}{3}x+\frac{25}{36}=-2+\frac{25}{36}
كەسىرنىڭ سۈرەت ۋە مەخرەجلىرىنىڭ كىۋادراتىنى تېپىش ئارقىلىق \frac{5}{6} نىڭ كىۋادراتىنى تېپىڭ.
x^{2}+\frac{5}{3}x+\frac{25}{36}=-\frac{47}{36}
-2 نى \frac{25}{36} گە قوشۇڭ.
\left(x+\frac{5}{6}\right)^{2}=-\frac{47}{36}
كۆپەيتكۈچى x^{2}+\frac{5}{3}x+\frac{25}{36}. ئادەتتە x^{2}+bx+c پۈتۈن سانلىق كىۋادرات بولسا، ئۇنىڭ كۆپەيتكۈچىسى ھەردائىم \left(x+\frac{b}{2}\right)^{2} بولىدۇ.
\sqrt{\left(x+\frac{5}{6}\right)^{2}}=\sqrt{-\frac{47}{36}}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x+\frac{5}{6}=\frac{\sqrt{47}i}{6} x+\frac{5}{6}=-\frac{\sqrt{47}i}{6}
ئاددىيلاشتۇرۇڭ.
x=\frac{-5+\sqrt{47}i}{6} x=\frac{-\sqrt{47}i-5}{6}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{5}{6} نى ئېلىڭ.