x نى يېشىش
x=-13
x=1
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
x^{2}+12x-13=0
ھەر ئىككى تەرەپتىن 13 نى ئېلىڭ.
a+b=12 ab=-13
تەڭلىمىنى يېشىش ئۈچۈن x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) دېگەن فورمۇلا ئارقىلىق x^{2}+12x-13 نى ھېسابلاڭ. a ۋە b نى تېپىش ئۈچۈن يېشىدىغان سىستېما بېكىتىڭ.
a=-1 b=13
ab مەنپىي، شۇڭا a بىلەن b نىڭ بەلگىسى قارىمۇقارشى. a+b مۇسبەت، شۇڭا مۇسبەت ساننىڭ مۇتلەق قىممىتى مەنپىي ساننىڭكىدىن چوڭ. ئۇنداق جۈپ پەقەت سىستېما يېشىش ئۇسۇلىدۇر.
\left(x-1\right)\left(x+13\right)
كۆپەيتكەن \left(x+a\right)\left(x+b\right) دېگەن ئىپادىنى تاپقان قىممەت ئارقىلىق قايتا يېزىڭ.
x=1 x=-13
تەڭلىمىنى يېشىش ئۈچۈن x-1=0 بىلەن x+13=0 نى يېشىڭ.
x^{2}+12x-13=0
ھەر ئىككى تەرەپتىن 13 نى ئېلىڭ.
a+b=12 ab=1\left(-13\right)=-13
تەڭلىمىنى يېشىش ئۈچۈن گۇرۇپپىلاش ئارقىلىق سول تەرەپنى كۆپەيتىپ چىقىرىڭ. ئاۋۋال سول تەرەپنى x^{2}+ax+bx-13 شەكلىدە يېزىش كېرەك. a ۋە b نى تېپىش ئۈچۈن يېشىدىغان سىستېما بېكىتىڭ.
a=-1 b=13
ab مەنپىي، شۇڭا a بىلەن b نىڭ بەلگىسى قارىمۇقارشى. a+b مۇسبەت، شۇڭا مۇسبەت ساننىڭ مۇتلەق قىممىتى مەنپىي ساننىڭكىدىن چوڭ. ئۇنداق جۈپ پەقەت سىستېما يېشىش ئۇسۇلىدۇر.
\left(x^{2}-x\right)+\left(13x-13\right)
x^{2}+12x-13 نى \left(x^{2}-x\right)+\left(13x-13\right) شەكلىدە قايتا يېزىڭ.
x\left(x-1\right)+13\left(x-1\right)
بىرىنچى گۇرۇپپىدىن x نى، ئىككىنچى گۇرۇپپىدىن 13 نى چىقىرىڭ.
\left(x-1\right)\left(x+13\right)
تارقىتىش قانۇنى بويىچە ئومۇمىي ئەزا x-1 نى چىقىرىڭ.
x=1 x=-13
تەڭلىمىنى يېشىش ئۈچۈن x-1=0 بىلەن x+13=0 نى يېشىڭ.
x^{2}+12x=13
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
x^{2}+12x-13=13-13
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 13 نى ئېلىڭ.
x^{2}+12x-13=0
13 دىن ئۆزىنى ئالسىڭىز 0 قالىدۇ.
x=\frac{-12±\sqrt{12^{2}-4\left(-13\right)}}{2}
بۇ تەڭلىمە ئۆلچەملىك شەكىلدە: ax^{2}+bx+c=0. كىۋادراتلىق فورمۇلا \frac{-b±\sqrt{b^{2}-4ac}}{2a} دا 1 نى a گە، 12 نى b گە ۋە -13 نى c گە ئالماشتۇرۇڭ.
x=\frac{-12±\sqrt{144-4\left(-13\right)}}{2}
12 نىڭ كىۋادراتىنى تېپىڭ.
x=\frac{-12±\sqrt{144+52}}{2}
-4 نى -13 كە كۆپەيتىڭ.
x=\frac{-12±\sqrt{196}}{2}
144 نى 52 گە قوشۇڭ.
x=\frac{-12±14}{2}
196 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=\frac{2}{2}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{-12±14}{2} نى يېشىڭ. -12 نى 14 گە قوشۇڭ.
x=1
2 نى 2 كە بۆلۈڭ.
x=-\frac{26}{2}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{-12±14}{2} نى يېشىڭ. -12 دىن 14 نى ئېلىڭ.
x=-13
-26 نى 2 كە بۆلۈڭ.
x=1 x=-13
تەڭلىمە يېشىلدى.
x^{2}+12x=13
بۇنىڭغا ئوخشاش كىۋادراتلىق تەڭلىمىنى كىۋادراتقا كەلتۈرۈش ئارقىلىق يېشىشكە بولىدۇ. كىۋادراتقا كەلتۈرۈش ئۈچۈن تەڭلىمە x^{2}+bx=c دېگەن شەكىلدە بولۇشى كېرەك.
x^{2}+12x+6^{2}=13+6^{2}
12، يەنى x ئەزانىڭ كوئېففىتسېنتىنى 2 گە بۆلۈپ، 6 نى چىقىرىڭ. ئاندىن تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 6 نىڭ كىۋادراتىنى قوشۇڭ. بۇ باسقۇچ ئارقىلىق تەڭلىمىنىڭ سول تەرىپى پۈتۈن سانلىق كىۋادراتقا ئايلىنىدۇ.
x^{2}+12x+36=13+36
6 نىڭ كىۋادراتىنى تېپىڭ.
x^{2}+12x+36=49
13 نى 36 گە قوشۇڭ.
\left(x+6\right)^{2}=49
كۆپەيتكۈچى x^{2}+12x+36. ئادەتتە x^{2}+bx+c پۈتۈن سانلىق كىۋادرات بولسا، ئۇنىڭ كۆپەيتكۈچىسى ھەردائىم \left(x+\frac{b}{2}\right)^{2} بولىدۇ.
\sqrt{\left(x+6\right)^{2}}=\sqrt{49}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x+6=7 x+6=-7
ئاددىيلاشتۇرۇڭ.
x=1 x=-13
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 6 نى ئېلىڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}